NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE I\.r

(NAAC Accredited) o
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala) ok e

Since 1968

DEPARTMENT OF MECHATRONICS ENGINEERING
COURSE MATERIALS

e,

MRT206 MICROPROCESSOR AND EMBEDDED SYSTEMS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in
Engineering and Frontier Technology and to impart quality education to mould technically
competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to
imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated
research scientists and intellectual leaders of the country who can spread the beams of light and
happiness among the poor and the underprivileged.

ABOUT DEPARTMENT
4 Established in: 2013

4 Course offered: B.Tech Mechatronics Engineering

4 Approved by AICTE New Delhi and Accredited by NAAC

4 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION
To develop professionally ethical and socially responsible Mechatronics engineers to serve the
humanity through quality professional education.

DEPARTMENT MISSION

1) The department is committed to impart the right blend of knowledge and quality
education to create professionally ethical and socially responsible graduates.

2) The department is committed to impart the awareness to meet the current challenges in
technology.

3) Establish state-of-the-art laboratories to promote practical knowledge of mechatronics to
meet the needs of the society

PROGRAMME EDUCATIONAL OBJECTIVES

l. Graduates shall have the ability to work in multidisciplinary environment with good
professional and commitment.

. Graduates shall have the ability to solve the complex engineering problems by applying
electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in
their profession.

I1l. Graduates shall have the ability to lead and contribute in a team with entrepreneur skills,
professional, social and ethical responsibilities.

IV. Graduates shall have ability to acquire scientific and engineering fundamentals necessary
for higher studies and research.

PROGRAM OUTCOME (PO’S)

Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO 2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO 9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSO’S)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by

integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering

problem related to instrumentation, control, automation, robotics and provide solutions.

MRT206

MICROPROCESSOR &
EMBEDDED SYSTEMS

CATEGORY

CREDIT

PCC

=3 a~]

Preamble:

The Purpose of the course is to provide the students the knowledge of Microprocessors,
Microcontroller and embedded systems.

This course is emphasis on architecture,

Programming and system design of 8085 microprocessor and 8051 microcontrollers. The
course is intended for making the basic knowledge in Embedded systems, Embedded C and

development tools.

Prerequisite:

MRT203 DIGITAL AND ANALOG CIRCUITS

Course Outcomes: After the completion of the course the student will be able to

CO 1 | Understand the basic concepts of 8085 microprocessor

CO 2 | Understand the basic concepts of 8085 interfacing with input output devices and
memory device

CO 3 | Understand the overview of an Embedded Systems

CO 4 | Interpret the basic concepts of 8051 microcontroller

CO 5 | Interface peripheral devices with 8051 microcontrollers

CO 6 | Write C/Assembly Program for a microcontroller

Mapping of course outcomes with program outcomes

PO (PO (PO (PO (PO (PO |PO |PO PO |PO |PO |PO
1 2 3 4 5 6 7 8 9 10 11 12
CcOo |3 2 2 2 3 1 3
1
CcOo |3 3 3 3 3 1 3
2
CcOo |3 2 2 2 1 1 3
3
CcOo |3 2 2 2 1 1 3
4
CcOo |3 3 3 3 3 1 3
5
CcOo |3 3 3 3 3 1 3
6

Assessment Pattern

Bloom’s Category

Continuous Assessment

Tests

End Semester Examination

Remember 10 10 10

Understand 20 20 20

Apply 20 20 70

Analyse

Evaluate

Create

Mark distribution

Total CIE ESE ESE
Marks Duration

150 50 100 3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A
contain 10 questions with 2 questions from each module, having 3 marks for each question.
Students should answer all questions. Part B contains 2 questions from each module of which
student should answer any one. Each question can have maximum 2 sub-divisions and carry
14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Describe various interrupt sources on a 8085 processor

2. List the various jump instructions by 8085 processor

3. Develop a assembly program to sort N number in ascending order
Course Outcome 2 (CO2)

1. State the functionality of Program counter in a microprocessor

2. Describe memory interface in 8085 processor

3. Define the instruction cycle for an 8085 processor

Course Outcome 3(CO3):

1. List the various tools used in embedded systems development

2. Differentiate a Microprocessor and Microcontroller

3. Describe the features and characteristics of embedded systems
Course Outcome 4 (CO4):

1. Describe 8051 architecture with a neat block diagram.

2. [llustrate Memory organization in 8051 microcontrollers.

3. Describe addressing modes of 8051 with example

Course Outcome 5 (COS):

1. Show the program for generating 1 KHz signal

2. Demonstrate the working of serial peripheral in 8051

3. Design a system to actuate a stepper motor to 45 degree clock wise
Course Outcome 6 (CO6):

1.Show the program to add two 16-bit number using 8051 controllers
2. Write a C program to send string “Hello” through serial port

3. Demonstrate bit manipulating instruction with example

Model Question paper
Course Code: MRT206
Course Name: MICROPROCESSOR & EMBEDDED SYSTEMS
Max.Marks:100 Duration: 3 Hours
PARTA
Answer all Questions. Each question carries 3 Marks
1. Describe flag register in the 8085 microprocessors
2. Differentiate register and memory addressing mode with an example
3. Discuss mode 1 of 8255 PPI with diagram
4. Draw the timing diagram for Memory Read operation.

5. Differentiate between hard & soft real time systems.

6. What are the demerits of Waterfall Model?

7. Explain the following instructions used in 8051 microcontrollers.

1) MOV R1, #05H ii) ADD A, #01H iii)) MOV R2, 07H

8. Explain with neat diagram the RAM of 8051.

9. Define the structure of an Embedded C program

10. Explain I/O ports and its functions in 8051.
PART B

Answer any one full question from each module. Each question carries 14 Marks

Module 1

11.a. Draw and explain 8085 Architecture with neat diagram

b. List the various jump instructions by 8085 processor

12 a. Develop an assembly program to sort N number in ascending order
Module 2

13. Design a LED blinking system with 8085 and 8255

14.a. Explain Fetch cycle & Execute cycle in 8085.

b. Describe memory interface in 8085 processor

Module 3

15. Explain 1) Compiler ii) Assembler iii) Linker iv) Loaders.

16. a. List the field of applications for an embedded system.

b. List out the challenges in Embedded Systems.
Module 4

17 a. Write an ALP in 8051 to add two 32-bit numbers & store the result.

b. Explain with neat diagram the Register organisation and SFR in 8051.

18 Explain with neat block diagram the architecture of 8051 Microcontroller
Module 5

19. Write a C program to send string “Hello” through serial port

20. Explain with suitable diagram and program, how an ADC can be interfaced with 8085

Microprocessor.

Syllabus

Module

Topics

1

8085 Microprocessor: Evolution of Microprocessors- 8085 Architecture —
Addressing modes- Classification of Instruction set- Interrupts-introduction
to assembly language programming —code conversion, sorting—binary and
BCD arithmetic.

Timing and control-Machine cycles, instruction cycle and T states—fetch
and execute cycles— Timing diagram for instructions.

IO and memory interfacing —Address decoding—I/O ports — Programmable
peripheral interface PPI 8255 -Modes of operation. Interfacing of LEDs

Introduction to Embedded Systems-Application domain of embedded
systems, features and characteristics, System model, Microprocessor Vs
Microcontroller, current trends and challenges, hard and soft real time
systems, Embedded product development, Life Cycle Management (water
fall model), Tool Chain System, Assemblers, Compilers, linkers, Loaders,
Debuggers Profilers & Test Coverage Tools-cross compilation

8051 Microcontroller: Selection of Microcontrollers - 8051
Microcontroller Architecture-Memory organization —Special function
registers —Addressing modes — Instruction set - Introduction to assembly
language programming using 8051 (basic arithmetic operations)- Interrupts.

Embedded C Programming: structure of an embedded C program -data
type-key words- basic programming using embedded C (bit level
manipulations-accessing and configuring of different status, control and
peripheral registers)

Peripheral Programming: I/O port programming — Timer programming —
Serial communication programming — Peripheral Interfacing diagram and
programming of A/D and D/A converters, Stepper motor.

Text Books

1. Ramesh S Gaonkar, Microprocessor Architecture, Programming and applications with the
8085, Architecture, Programming and Applications, Penram International Publishing PVT
Ltd. 6" Edition

2.Mazidi Muhammad Ali, Mazidi Janice Gillispie and McKinlayRolin, —The 8051
Microcontroller and Embedded Systems, 2 nd Edition, Prentice Hall of India, New Delhi,

2013.

3. Lyla B Das — Embedded Systems — An Integrated Approach, Pearson Publication, sixth
edition 2014

Reference Books

1.Douglas V. Hall, Microprocessors and Interfacing, Tata McGraw Hill, Education, New

2. Mathur A., Introduction to Microprocessors, Tata McGraw Hill, New Delhi,1992.

3. Rafiquzzaman, Microprocessor Theory and Application, PHI Learning, First Edition. 7.

4. Ray A joy and Burchandi, Advanced Microprocessor & Peripherals, Tata McGraw Hill,
Education, New Delhi, Second Edition.

5. Scott MacKenzie, Raphael C W Phan, “The8051Microcontroller”, Fourth Edition, Pearson
education Delhi, Third Edition. /Prentice hall of India International Publishing; Sixth
edition,2014.

Course Contents and Lecture Schedule

No Topic No. of Lectures
1 8085 Microprocessor
1.1 Evolution of Microprocessors- 8085 Architecture 1
1.2 Addressing modes 1
1.3 Classification of Instruction set 3
1.4 Interrupts 2
1.5 Introduction to assembly language programming —code |2
conversion, sorting—binary and BCD arithmetic.
2 8085 Interfacing
2.1 Timing and control-Machine cycles, instruction cycle and T states | 2
2.2 fetch and execute cycles— Timing diagram for instructions. 2
2.3 IO and memory interfacing 1
2.4 Address decoding—1/O ports 1
2.5 Programmable peripheral interface PPI8255 -Modes of operation. | 2
2.6 Interfacing of LEDs 1

3 Introduction to Embedded Systems

3.1 Application domain of embedded systems, features and |2
characteristics, System model

3.2 Microprocessor Vs Microcontroller, current trends and challenges, | 2
hard and soft real time systems,

33 Embedded product development, Life Cycle Management (water | 2
fall model)

34 Tool Chain System, Assemblers, Compilers, linkers, Loaders, | 3
Debuggers Profilers & Test Coverage Tools-cross compilation

4 8051 Microcontroller

4.1 Selection of Microcontrollers - 8051 Microcontroller Architecture | 1

4.2 Memory organization 1

4.3 Special function registers 1

4.4 Addressing modes 1

4.5 Instruction set 2

4.6 Introduction to assembly language programming using 8051 (basic | 2
arithmetic operations)

4.7 Interrupts. 1

5 Embedded C Programming

5.1 structure of an embedded C program -data type-key words- basic | 3
programming using embedded C (bit level manipulations-
accessing and configuring of different status, control and
peripheral registers)

5.2 I/O port programming 1

53 Timer programming 1

5.4 Serial communication programming 1

5.5 Peripheral Interfacing diagram and programming of A/D and D/A | 3

converters, Stepper motor.

MODULE 1

History of microprocessor:-

The invention of the transistor in 1947 was a significant development in the world of technology. It could perform the
function of a large component used in a computer in the early years. Shockley, Brattain and Bardeen are credited with this invention
and were awarded the Nobel prize for the same. Soon it was found that the function this large component was easily performed by a
group of transistors arranged on a single platform. This platform, known as the integrated chip (IC), turned out to be a very crucial
achievement and brought along a revolution in the use of computers. A person named Jack Kilby of Texas Instruments was honored
with the Nobel Prize for the invention of IC, which laid the foundation on which microprocessors were developed. At the same time,
Robert Noyce of Fairchild made a parallel development in IC technology for which he was awarded the patent.

ICs proved beyond doubt that complex functions could be integrated on a single chip with a highly developed speed and
storage capacity. Both Fairchild and Texas Instruments began the manufacture of commercial ICs in 1961. Later, complex
developments in the IC led to the addition of more complex functions on a single chip. The stage was set for a single controlling
circuit for all the computer functions. Finally, Intel corporation's Ted Hoff and Frederico Fagin were credited with the design of the
first microprocessor.

The work on this project began with an order from a Japanese calculator company Busicom to Intel, for building some chips for it.
Hoff felt that the design could integrate a number of functions on a single chip making it feasible for providing the required
functionality. This led to the design of Intel 4004, the world's first microprocessor. The next in line was the 8 bit 8008
microprocessor. It was developed by Intel in 1972 to perform complex functions in harmony with the 4004.

This was the beginning of a new era in computer applications. The use of mainframes and huge computers was scaled down to a
much smaller device that was affordable to many. Earlier, their use was limited to large organizations and universities. With the
advent of microprocessors, the use of computers trickled down to the common man. The next processor in line was Intel's 8080 with
an 8 bit data bus and a 16 bit address bus. This was amongst the most popular microprocessors of all time.

Very soon, the Motorola corporation developed its own 6800 in competition with the Intel's 8080. Fagin left Intel and formed his own
firm Zilog. It launched a new microprocessor Z80 in 1980 that was far superior to the previous two versions. Similarly, a break off
from Motorola prompted the design of 6502, a derivative of the 6800. Such attempts continued with some modifications in the base
structure.

The use of microprocessors was limited to task-based operations specifically required for company projects such as the automobile
sector. The concept of a 'personal computer' was still a distant dream for the world and microprocessors were yet to come into
personal use. The 16 bit microprocessors started becoming a commercial sell-out in the 1980s with the first popular one being the
TMS9900 of Texas Instruments.

http://www.buzzle.com/articles/positive-effects-of-technology-on-society.html
http://www.buzzle.com/articles/nobel-prizes/
http://www.buzzle.com/articles/what-are-computer-chips-made-of.html
http://www.buzzle.com/articles/uses-of-computer.html
http://www.buzzle.com/articles/autos/

Intel developed the 8086 which still serves as the base model for all latest advancements in the microprocessor family. It
was largely a complete processor integrating all the required features in it. 68000 by Motorola was one of the first
microprocessors to develop the concept of microcoding in its instruction set. They were further developed to 32 bit
architectures. Similarly, many players like Zilog, IBM and Apple were successful in getting their own products in the
market. However, Intel had a commanding position in the market right through the microprocessorera.

The 1990s saw a large scale application of microprocessors in the personal computer applications developed by the newly
formed Apple, IBM and Microsoft corporation. It witnessed a revolution in the use of computers, which by then was a
household entity.

This growth was complemented by a highly sophisticated development in the commercial use of microprocessors. In 1993,
Intel brought out its 'Pentium Processor' which is one of the most popular processors in use till date. It was followed by a
series of excellent processors of the Pentium family, leading into the 21st century. The latest one in commercial use is the
Pentium Dual Core technology and the Xeon processor. They have opened up a whole new world of diverse applications.
Supercomputers have become common, owing to this amazing development in microprocessors.

INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER
ARCHITECTURE:

A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to
central processing unit of a computer. Any microprocessor-based systems having limited number of resources are called
microcomputers. Nowadays, microprocessor can be seen in almost all types of electronics devices like mobile phones,
printers, washing machines etc. Microprocessors are also used in advanced applications like radars, satellites and flights.
Due to the rapid advancements in electronic industry and large scale integration of devices results in a significant cost
reduction and increase application of microprocessors and their derivatives.

| | |
i A A A A A A A A ‘T -
v L] Y Data b“i 1 : ' 1‘ .=
El >
|]
Y Contro Dusﬁl‘
Rl y - i y >
; Address bus |
- v) T ——

Fig.1 Microprocessor-based system

e Bit: Abitis asingle binary digit.

e Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and logic unitof
the processor. A 16-bit binary number is called a word in a 16-bit processor.

e Bus: Abus is a group of wires/lines that carry similar information.

e System Bus: The system bus is a group of wires/lines used for communication between the microprocessorand
peripherals.

e Memory Word: The number of bits that can be stored in a register or memory element is called a memory word.

e Address Bus: It carries the address, which is a unique binary pattern used to identify

a memory location or an I/O port. For example, an eight bit address bus has eight lines and thus it can address 2°
= 256 different locations. The locations in hexadecimal format can be written as 00H — FFH.

e Data Bus: The data bus is used to transfer data between memory and processor or between 1/O device and

processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 16-bit processor will have
16-bit data bus.

e Control Bus: The control bus carry control signals, which consists of signals for selection of memory or 1/0
device from the given address, direction of data transfer and synchronization of data transfer in case of slow
devices.

http://www.buzzle.com/articles/desktop-computers-pc/
http://www.buzzle.com/articles/apple-computers/
http://www.buzzle.com/articles/when-was-microsoft-founded-and-by-whom.html
http://www.buzzle.com/articles/supercomputers/
http://www.buzzle.com/articles/supercomputers/

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with control unit to
process the instruction execution. Almost all the microprocessors are based on the principle of store-
program concept. In store- program concept, programs or instructions are sequentially stored in the
memory locations that are to be executed. To do any task using a microprocessor, it is to be programmed
by the user. So the programmer must have idea about its internal resources, features and supported
instructions. Each microprocessor has a set of instructions, a list which is provided by the microprocessor
manufacturer. The instruction set of a microprocessor is provided in two forms: binary machine code and
mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions in the form
of binary patterns is called a machine language and it is difficult for us to understand. Therefore, the binary
patterns are given abbreviated names, called mnemonics, which forms the assembly language. The
conversion of assembly-level language into binary machine-level language is done by using an application
called assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

e Transistor-Transistor Logic (TTL)
e Emitter Coupled Logic (ECL)
e Complementary Metal-Oxide

Semiconductor (CMOS) Classification of
Microprocessors:
Based on their specification, application and architecture microprocessors are classified.

Based on size of data bus:

e 4-bit microprocessor
e 8-bit microprocessor
e 16-bit microprocessor
e 32-bit microprocessor

Based on application:

e General-purpose microprocessor- used in general computer system and can be used by
programmer for any application. Examples, 8085 to Intel Pentium.

e Microcontroller- microprocessor with built-in memory and ports and can be programmed for
any genericcontrol application. Example, 8051.

® Special-purpose processors- designed to handle special functions required for an application.
Examples, digital signal processors and application-specific integrated circuit (ASIC) chips.

Based on architecture:

e Reduced Instruction Set Computer (RISC) processors
e Complex Instruction Set Computer (CISC) processors

2. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5 V for power. It
can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and address bus width is 16-bit, thus
it can address 2'° = 64 KB of memory. The internal architecture of 8085 is shown is Fig. 2.

INTR INTA RST5.5 RST6S5 RST75 TRAP SID SO0

Il | = PN

o
ko

45

H-;—“L""*
i

= Power Supply ‘
GNO—> ,
X2 S
axour crement
-+ M

[

RESET RESET READY ALE SO S1 l RD l uowl
IN ouT 10/M WR HLDA (

T E
.
EH

A8 - AlS ADO~ AD7
Address bus Address / DATA bus

Fig. 2 Internal Architecture of 8085
Avrithmetic and Logic Unit
The ALU performs the actual numerical and logical operations such as Addition (ADD), Subtraction
(SUB), AND, OR etc. It uses data from memory and from Accumulator to perform operations. The results
of the arithmetic and logical operations are stored in the accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3. In addition, it
has two 16-bit registers: stack pointer and program counter. They are briefly described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E, H and L.
they can be combined as register pairs - BC, DE and HL to perform some

16- bit operations. The programmer can use these registers to store or copy data into the register by using data copy
instructions.

ACCUMULATOR A (8) Lr e IRF GTJWR I
I I I I
B ®) C ()
D ® E (8)
H (8) 1 (3)
Stack Pointer (SP) (16)
Program Counter (PC) (16)
Data|Bus Addre s Bus
A 8 Lines Bidirectional 16 Lines unidirectional

Fig. 3 Register organisation
Accumulator
The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data and to perform arithmetic
and logical operations. The result of an operation is stored in the accumulator. The accumulator is also identified as
register A.
Flag register
The ALU includes five flip-flops, which are set or reset after an operation according to data condition of the result in the

accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags.
Their bit positions in the flag register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

D7 Ds Ds D4 D3 D> D1 Do
S Z AC P CY

Fig. 4 Flag register

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit, the flip-flop uses to
indicate a carry by setting CY flag to 1. When an arithmetic operation results in zero, Z flag is set to 1. The S flag is just a
copy of the bit D7 of the accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s
complement representation. The AC flag is set to 1, when a carry result from bit D3 and passes to bit D4. The P flag is set
to 1, when the result in accumulator contains even number of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. The
microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is to
point to the memory address from which the next byte is to be fetched. When a byte is being fetched, the program counter
is automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory location in R/W memory, called
stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction sent here from memory
prior to execution. Decoder then takes instruction and decodes or interprets the instruction. Decoded instruction then
passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out the instruction, which has
been decoded. Typical buses and their timing are described as follows:

e Data Bus: Data bus carries data in binary form between microprocessor and other external units such as memory.
It is used to transmit data i.e. information, results of
arithmetic etc between memory and the microprocessor. Data bus is bidirectional in nature. The data bus width
of 8085 microprocessor is 8-bit i.e. 28 combination of binary digits and are typically identified as DO — D7. Thus
size of the data bus determines what arithmetic can be done. If only 8-bit wide then largest number is 11111111
(255 in decimal). Therefore, larger numbers have to be broken down into chunks of 255. This slows
microprocessor.

e Address Bus: The address bus carries addresses and is one way bus from microprocessor to the memory or other
devices. 8085 microprocessor contain 16-bit address bus and are generally identified as AO - A15. The higher
order address lines (A8 — A15) are unidirectional and the lower order lines (A0 — A7) are multiplexed (time-
shared) with the eight data bits (DO — D7) and hence, they are bidirectional.

e Control Bus: Control bus are various lines which have specific functions for coordinating and controlling
microprocessor operations. The control bus carries control signals partly unidirectional and partly bidirectional.
The following control and status signals are used by 8085 processor:

l. ALE (output): Address Latch Enable is a pulse that is provided when an address appears on the ADO —
ADY lines, after which it becomes 0.

Il. RD (active low output): The Read signal indicates that data are being read from the selected 1/O or memory
device and that they are available on the data bus.

Ill. WR (active low output): The Write signal indicates that data on the data bus are to be written into aselected
memory or 1/O location.

Iv. IO/M_(output): It is a signal that distinguished between a memory operation

and an 1/O operation. When IO/IM=0itisa memory operation and I0/M = 1itis an I/O operation.
V. S1 and SO (output): These are status signals used to specify the type of operation being performed;
they are listed in Table 1.

Table 1 Status signals and associated operations

S1 SO States
0 0 Halt
0 1 Write
1 0 Read
1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The microprocessor performs primarily four
operations:

1. Memory Read: Reads data (or instruction) from memory.
2. Memory Write: Writes data (or instruction) into memory.
3. 1/0O Read: Accepts data from input device.

4. 1/0 Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control bus as shown in Fig. 5.

AA: e Address Bus >
\/ \Z

| [
N D,<‘I 6 f\ (:*;{:9 =
R

D, Data Bus

i 8 B =

—_ Control Bus

Fig. 5 The 8085 bus structure

3. 8085 PIN DESCRIPTION

Properties:

e |tisa 8-bit microprocessor

e Manufactured with N-MOS technology

e 40 pin IC package

e It has 16-bit address bus and thus has 216 = 64 KB addressing capability.
e Operate with 3 MHz single-phase clock

e +5V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All the signals are classified into
six groups:

e Address bus

e Data bus

e Control & status signals

e Power supply and frequency signals
e Externally initiated signals

e Serial I/0O signals

X, 41 40 P Vee
X <+ 3 39 " HOLD }D.\L—\
RESE oUT <43 38 " HLDA
Ty & % { 4 4 37 —®» CLK(OUT) ——
Serial V/p, o/p signals :?I)D <« s % :), RESET IN
TRAP ¢— 6 35 (P READY 5 G
RST75 4—7 M :
RST6S «—1 8 33 5
RSTSS «—, S085SA L =
INIR 4— 19 31 —* wr
INTA - 30 |— ALE
AD, 4|12 . 3
D >0
R N 18— Ais
AD: 14 17— Au
ADs <4— 15 % —» A
AD: <4— 1 3 —» An
AD;: <4— 17 24— An
AD; 4— 13 33— Ap
AD, 419 2 —p A
Vss 4“0 21 P As

Fig. 6 8085 microprocessor pin layout and signal groups
Address and Data Buses:

e A8- Al5 (output, 3-state): Most significant eight bits of memory addresses and the eight bits of the 1/0
addresses. These lines enter into tri-state high impedance state during HOLD and HALT modes.

e ADO - ADY (input/output, 3-state): Lower significant bits of memory addresses and the eight bits of the I/O
addresses during first clock cycle. Behaves as data bus

during third and fourth clock cycle. These lines enter into tri-state high impedance state during HOLD and
HALT modes.

Control & Status Signals:

ALE: Address latch enable
RD : Read control signal.

WR : Write control signal.

I0/M , S1 and SO : Status signals. Power

Supply & Clock Frequency:

Vcce: +5 V power supply

Vss: Ground reference

X1, X2: A crystal having frequency of 6 MHz is connected at these two pins
CLK: Clock output

Externally Initiated and Interrupt Signals:

® RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-stated and the processor is reset.

RESET OUT: This signal indicates that the processor is being reset. The signal can be used to reset other
devices.

READY:: When this signal is low, the processor waits for an integral number of clock cycles until it goes high.

HOLD: This signal indicates that a peripheral like DMA (direct memory access) controller is requesting the use
of address and data bus.

HLDA: This signal acknowledges the HOLD request.
INTR: Interrupt request is a general-purpose interrupt.

INTA : This is used to acknowledge an interrupt.

RST 7.5, RST 6.5, RST 5,5 — restart interrupt: These are vectored interrupts and have highest priority than INTR
interrupt.

TRAP: This is a non-maskable interrupt and has the highest priority.

Serial 1/O Signals:

SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM instruction.
SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU provides and decoding unit, the microprocessor manufacturer microprocessor. The
instruction set for every machine code and instruction set consists of both
mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The entire group of
instructions that a microprocessor supports is called instruction set. Microprocessor instructions can be classified based on
the parameters such functionality, length and operand addressing.

Classification based on functionality:

Data transfer operations: This group of instructions copies data from source to destination. The content of the
source is not altered.

Avrithmetic operations: Instructions of this group perform operations like addition, subtraction, increment &
decrement. One of the data used in arithmetic operation is stored in accumulator and the result is also stored in
accumulator.

Logical operations: Logical operations include AND, OR, EXOR, NOT. The operations like AND, OR and
EXOR uses two operands, one is stored in accumulator and other can be any register or memory location. The
result is stored in accumulator. NOT operation requires single operand, which is stored in

accumulator.

Branching operations: Instructions in this group can be used to transfer program sequence from one memory
location to another either conditionally or unconditionally.

Machine control operations: Instruction in this group control execution of other instructions and control
operations like interrupt, halt etc.

Classification based on length:

One-byte instructions: Instruction having one byte in machine code. Examples are depicted in Table 2.
Two-byte instructions: Instruction having two byte in machine code. Examples are depicted in Table3
Three-byte instructions: Instruction having three byte in machine code. Examples are depicted in Table 4.

Table 2 Examples of one byte instructions

Opcode Operand Machine code/Hex code
MOV A B 78
ADD M 86

Table 3 Examples of two byte instructions

Opcode Operand | Machine code/Hex code | Byte description
MVI A, 7TFH 3E First byte
TF Second byte
ADI OFH C6 First byte
OF Second byte

Table 4 Examples of three byte instructions

Opcode Operand | Machine code/Hex code | Byte description
JMP 9050H C3 First byte
50 Second byte
90 Third byte
LDA 8850H 3A First byte
50 Second byte
88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing. The various formats for
specifying operands are called addressing modes. The 8085 has the following five types of addressing:

Immediate addressing
Memory direct addressing
Register direct addressing
Indirect addressing
Implicit addressing

IEESIS A -

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word — transfers to the destination register or memory
location.

Ex: MVI A, 9AH

e The operand is a part of the instruction.
e The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register. The memory location address is

given in the instruction.
Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to destination register.
Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is moved to the accumulator.
Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is mentioned in the instruction.

5. INSTRUCTION SET OF 8085
Data Transfer Instructions:

MOV instruction
XCHG Instruct

Mnemonic Meaning Format Operation Flags affected
XCHG E xchange XCHG D,S (D) < (S) None
(a)
Destination Source
Accumulator Reg16
Memory Register
Register Register
Register Memory
XLAT i
Mnemonic Meaning Format Operation Flags affected
XLAT Translate XLAT ((AL) + (BX) + (DS) *10) AL none

LEA, LDS, and LES instructions

LEA: Load effective Address, LEA Reg 16, EA
LDS: Load register and DS, LDS Reg 16, EA
LES: Load register and ES, LES Reg 16, EA

Store accumulator direct

STA 16-bit address The contents of the accumulator are copied into the memory
location' specified by the operand. This is a 3-byte
instruetion, the second byte: specifies the low-order address
and the third byte specifies the high-order address.
Example: STA 4350 or STA XYZ

Store accumulator indirect

STAX Reg. pair The contents of the accumuldtor are copied into the memory
location' specified by the contents of the operand (register
‘pair). The contents of the accumulator are not altered.
Example: STAX B

Store H and L registers direct ,

SHLD 16-bit address The contents:of register L are stored into the memory location
specified by the 16-bit address in the operand and the contents
of H register are stored into the next memory location by
incrementing the opeiand The contents of registers HL are
not altered. This is a 3-byte instruction, the second byte
specifies the low-order address and the third byte specifies the
‘high-order address.

Example: SHLD 2470

Exchange H and L with D and E

XCHG none The contents of register H are exchanged with the contents of
register D, and the contents of register L are exchanged with
the contents of registerE.
Example: XC HG

Copy H and L registers to the stack pointer

SPHL none The instruction loads the contents of the H and L registers
into the stack pointer register, the contents of the H register
provide the high-order address and the contents of the L
register prov 1de the low-order address. The contents of the H-
and L registers are not altered:
'Example SPHL

Exchange H and L with top of stack

XTHL none The contents of the L register are exchanged with the stack
location pointed out by the contents of the stack pointer
register. The contents of the H register are exchanged with
the next stack location (SP+1); hox\ ever, the contents of the
stack pointer register are not altered.
Example: XTHL

Push register pair onto stack

PUSH Reg. pair The contents of the register pair designated in the operand are
copied onto the stack in the following sequence. The stack
pointer register is decremented and the contents of the high-
order register (B, D, H., A) are copied into that location. The
stack pointer register is decremented again and the contents of
the low-order register (C, E, L., flags) are copied to that
location.
Example: PUSH B or PUSH A

Pop off stack to register pair

POP Reg. pair The contents of the memory location pointed out by the stack
pointer register are copied to the low-order register (C, E, L,
status tlags) of the operand. The stack pointer is incremented
by 1 and the contents of that memory location are copied to
the high-order register (B, D, H, A) of the operand. The stack
pointer register is again incremented by 1.
Example: POP H or POP A

Output data from accumulator to a port with 8-bit address

ouT 8-bit port address The contents of the accumulator are copied into the IO port
specified by the operand.
Example: OUT 87

Input data to accumulator from a port with 8-bit address

IN 8-bit port address The contents of the input port designated in the operand are
read and loaded into the accumulator.
Example: TN 82

Arithmetic Instructions:

Opcode Operand Description
Add register or memory to accumulator
ADD R The contents of the operand (register or memory) are
M added to the contents of the accumulator and the result is

stored in the accumulator. If the operand is a memory
location, its location is specified by the contents of the HL
registers. All flags are moditied to reflect the result of the
addition.

Example: ADDB or ADD M

Add register to accumulator with carry
ADC R The contents of the operand (register or memory) and
M the Carry flag are added to the contents of the accumulator

and the result is stored in the accumulator. If the operand is a
memory location, its location is specified by the contents of
the HL registers. All flags are modified to reflect the result of
the addition.
Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The 8-bit data (operand) is added to the contents of the
accumulator and the result is stored in the accumulator. All
flags are modified to reflect the result of the addition.
Example: ADI 45

Add immediate to accumulator with carry

ACI 8-bit data The 8-bit data (operand) and the Carry flag are added to the
contents of the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the result of the
addition.
Example: ACI 45

Add register pair to H and L registers

DAD Reg. pair The 16-bit contents of the specified register pair are added to
the contents of the HL register and the sum is stored in the
HL register. The contents of the source register pair are not
altered. If the result is larger than 16 bits, the CY flag is set.
No other flags are affected.
Example: DAD H

Subtract register or memory from accumulator
SUB R The contents of the operand (register or memory) are
M subtracted from the contents of the accumulator, and the

result is stored in the accumulator. If the operand is a
memory location, its location is specified by the contents of
the HL registers, All flags are modified to reflect the result of
the subtraction:
Example: SUBB or SUBM

Subtract source and borrow from accumulator
SBB R The contents of the operand {register or memory) and
M the Borrow flag are subtracted from the contents of the

accumulator and the result is placed in the accumulator. If
the operand 13 a memory-location, its location 1s specified by
the contents of the HL registers. All flags are modified to
reflect the result of the subtraction.
Example: SBB B or SBBM

Subtract immediate from accumulator

SUT 8-bit data The 8-bit data (operand) is subtracted from the contents of the
accumulator -and the result 15 stored 1n the accumulator. All
flags are modified to reflect the result of the subtraction.
Example: SUT 45

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted
from the contents of the accumulator and the result 1s stored
in the accumulator. Adl flags are modified to reflect the result
of the subtracion.
Example: SBI 45

Increment register or memory by 1
INR R The contents of the designated register-or memory)-are
M meremented by 1 and the result 1s stored in the same place. If
the operand is a memory location, its location is specified by
the contents of the HL registers.
Example: INRB or INR M

Increment register pair by 1

INX R The contents of the deswnated register pair are ineremented
by 1 and the result is stored i the same place.
Example: INXH

Deerement register-or memery by 1
DCR R
M

Decrement register pair by 1
DCX

Decimal adjust acetmulator
DAA none

BRANCHING INSTRUCTIONS
Opcode Operand

Jump unconditionally
IMP 16-bit address

Jump eonditionally

Operand: 16-bit address

The contents of the designated register or memory are
decremented b\ 1 ;md lhe result is stored in the same place. It
the operand is a memory location, its location 1s a-ps:uhr;d by
the contents of the HL registeis.

Example: DCR B or DCR M

The contents of the designated register pair are decremented
bv I and the result is stored in the same place.
Example: DCXH

The contents of the accumulater are changed from a binary
value to twio 4-bit binary coded decimal {BCD) digits. This is
the only nstruction that uses the auxiliary ﬂag to perforni the
binary to BCD converston, and the conversion proeedure is
deseribed below. 8, 7, AC, P, €Y flags are altered to reflect
the fesults of the operation.

If the value of the low-order 4-bits in the accumulator is
greater than 9 or 1f AC flag is sel. the instruction adds 6 te the
Tow-order four bits.

It the wvalue of the high-ordér 4-bits in the accumulator is
greater than 9 er if the Carry flag is set. the instrugtion adds 6
to the high-order four bits.

Example: DAA

Deseription

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand.
Example: IMP 2034 or IMP XYZ

The program sequence is transferred to the memeory location
specified by the 16-bit address given in the operand based on
the-specified flag of the PSW as described below.

Example: JZ 2034 or JZ XYZ

Opeode Deseription Flag Status
IC Jump on Carry CY=1
INC Jump on no Catry CY =0
P Jump on positive S=40
M Jump on minus 5=1
1z Jump on zero Z=1
INZ Jump on no zero Z=0
IPE Jump on parity even p=1
JPO Jump on-parity odd P=0

Unconditional subroutine call

CALL

Call conditionally

16-bit address

Operand: 16-bit address

Opcode
ccC
CNC

Description

Call on Carry
Call on no Carry
Call on positive
Call on minus
Call on zero
Call on no zero

Call on parity even

Call on paritiz od

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand. Before
the transfer. the address of the next istruction after CALL
(the contents of the program counter) is pushed onto the stack.
Example: CALL 2034 or CALL XYZ

The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand based on
the specified flag of the PSW as described below. Before the
transfer. the address of the next instruction after the call (the

contents of the program counter) is pushed onto the stack.
Example: CZ 2034 or CZXYZ

Flag Status
CY =1
CY =0

Il
D= o= =0

d

MOUNNYO
I

Return from subroutine unconditionally

RET

none

The program sequence is transferred from the subroutine to
the calling program. The two bytes from the top of the stack
are copied into the program counter, and program execution
begins at the new address.

Example: RET

Return from subroutine conditionally

Operand: none

Opcode
RC

Description

The program sequence is transferred from the subroutine to
the calling program based on the specified flag of the PSW as
described below. The two bytes from the top of the stack are
copied into the program counter, and program execution
begins at the new address.

Example: RZ

Flag Status

Return
Return
Return
Return
Return
Return
Return
Return

on Carry

on no Carry
on positive
on minus

on zero

on no zero

on parity even
on parity odd

CY =1
Y =0

TTNNONn®VAN
I

Cr= O =0

Ioad program counter with I, contents

PCHIL none The contents of registers H and L are copied into the program
counter. The contents of I are placed as the high-order byte
and the contents of L. as the low-order byte.

Example: PCHILL

Restart

RST 0-7 The RST instruction is equivalent to a l1-byte call instruction
to one of eight memory locations depending upon the number.
The instructions are generally used in conjunction with
interrupts and inserted using external hardware. However
these can be used as software instructions in a program to
transfer program execution to one ol the eight locations. The
addresses are:

Instruction Restart Address
RST O 0000
RST 1 OO0OSH
RST 2 OO 10H
RST 3 OO018H
RST 4 OO020FH
RST 5 0028H
RST 6 003011
RST 7 O038H

The 8085 has four additional interrupts and these interrupts
generate RST instructions internally and thus do not require
any external hardware. These imstructions and their Restart
addresses are:

Interrupt Restart Address
TRAP 0024H
RST 5.5 002CH
RST 6.5 0034F
RST 7.5 003CH
LOGICAL INSTRUCTIONS
Opcode Operand Description

Compare register or memory with accumulator

CMP R The contents of the operand (register or memory) are
M compared with the contents of the accumulator. Both
contents are preserved . The result of the comparison is

shown by setting the flags of the PSW as follows:

1if (A) < (reg/'mem): carry flag 1s set, s=1

if (A) — (reg'mem): zero flag is set. s=0

it (A) > (reg/mem): carry and zero tlags are reset, s=0
Example: CMPB or CMPM

Compare immediate with accumulator

CPI 8-bit data The second byte (8-bit data) i1s compared with the contents of
the accumulator. The wvalues being compared remain
unchanged. The result of the comparison is shown by setting
the flags of the PSW as follows:
if (A) < data: carry flag is set, s=1
if (A) = data: zero flag 1s set, s=0
it (A) = data: carry and zero flags are reset, s=0
Example: CPI 89

Logical AND register or memory with accumulator
ANA R The contents of the accumulator are logically ANDed with
M the contents of the operand (register or memory)., and the
result is placed in the accumulator. If the operand is a
memory location. its address is specified by the contents of
HL registers. S, Z. P are modified to reflect the result of the
operation. CY i1s reset. AC 1s setl.

Example: ANA B or ANA M

Logical AND immediate with accumulator

ANI 8-bit data The contents of the accumulator are logically ANDed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z. P are modified to reflect the result of the
operation. CY is reset. AC is set.
Example: ANI 86

Exclusive OR register or memory with accumulator
XRA R The contents of the accumulator are Exclusive ORed with
M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a
memory location, its address 1s specified by the contents of
HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: XRA B or XRAM

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are moditied to reflect the result of the
operation. CY and AC are reset.
Example: XRI 86

Logical OR register or memory with accumulaotr
ORA R The contents of the accumulator are logically ORed with
M the contents of the operand (register or memory), and the

result i1s placed in the accumulator. If the operand is a
memory location, its address 1s specified by the contents of
HL registers. S, Z, P are modified to reflect the result of the
operation. CY and AC are reset.
Example: ORA B or ORAM

Logical OR immediate with accumulator

ORI 8-bit data The contents of the accumulator are logically ORed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are moditied to reflect the result of the
operation. CY and AC are reset.
Example: ORI 86

Rotate accumulator left

RLC none Each binary bit of the accumulator is rotated left by one
position. Bit D7 1s placed in the position of D(as well as in
the Carry flag. CY is modified according to bit D7. S, Z, P,
AC are not affected.
Example: RLC

Rotate accumulator right

RRC none Each binary bit of the accumulator is rotated right by one
position. Bit D 1s placed in the position of D7 as well as in
the Carry flag. CY is modified according to bit Dq. S, Z, P,
AC are not affected.
Example: RRC

Rotate accumulator left through carry

RAL

nene

Each bmary bit of the accumulator is rotated left by one
position through the Carry flag. Bit D7 is placed in the Carry
flag. and the Carry flag is placed m the least significant
position Pg. CY is modified according to bit D7. §: Z, P, AC
are not affected.
Example: RAL

Rotate acewmulator right through carry

RAR none

Complement accumulator

CMA none

Complement carry
CMC

none
Set Carry
STC none

CONTROL INSTRUCTIONS
Opecode Operand

No operation
NOP none

Halt and enter wait state
HLT nene

Disable interrupts
DI none

Enable interrupts
El noie

Each bmarv bit of the accumulator is rotated right by one
position ﬂuough the Carry ﬂdL Bit Dy is placed in the Carry
flag, and the Carry flag is placed in the most siemhuant
position D7. €Y is modified according to bit Do. S, Z, P, AC
are not atfected.
Example: RAR

The contents of the actumulator are complemented.
are affected.
Example: CMA

No tlags
The Carry flagis complemented. No other tlags are affected.
Example: CMC

The Carry flag is set to 1.
Example: STC

No other flags dre affected.

Deseription

No operdtion is performed. The instruction is fetched and
decoded. However no opération is executed.
Example: NOP

The CPU finishes executing the current mstruction and halts
any further execution. An interrupt or reset is necessary to
exit from the halt state.

Example: HLT

The interrupt enable {lip-flop is reset and all the interrupts
except the TRAP are disabled. No flags are affected.
Example: DI

The ‘interrupt enable flip-flop is set and all interrupts are
enabled. No flags are atfected. After a systein reset or the
ac.kuo\xlcdsacm;nt of an interrupt. the interrupt enable ﬂxp—
flop is reset, thus ibling the interrupts. This instruction is
necessary to reenable theinterrupts (except TRAP),

Example: EI

Read interrupt mask

RIM none This 1s a multipurpose mstruction used to read the status of
mterrupts 7.5, 6.5, 5.5 and read serial data mput bit. The
mstruction loads eight bits in the accumulator with the
following interpretations.
Example: RIM

D, D Do D. D; D, D Dy
[SID[17 [16 |15 [IE[75]65]5.5]

L1 | L1 |1
Serial input Interrupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if flip-flop is set
bit = 1 if bit = 1

Set interrupt mask

SIM none This 1s a multipurpose mstruction and used to implement the
8085 interrupts 7.5, 6.5, 5.5, and serial data output. The
mstruction interprets the accumulator contents as follows.
Example: SIM

D'; Dg, D5 D.; D‘; Dg D| Du
[SOD | SDE | XXX | R7.5 [MSE [M7.5 [M6.5 [M55 |

l !
Serial output data J Reset R7.5 Masks i]ﬁtcn‘upts
if D, = 1 if bits = 1
Serial data enable Mask set
1 = Enable enable if
0 = Disable D, =1

7] SOD — Serial Output Data: Bit D, of the accumulator is latched into the SOD output
line and made available to a serial peripheral if bit D, = 1.

0] SDE— Serial Data Enable: If this bit = 1, it enables the serial output. To implement
serial output, this bit needs to be enabled.

0O XXX —Don't Care

[R7.5—Reset RST 7.5: If this bit = 1, RST 7.5 flip-flop is reset. This is an additional
control to reset RST 7.5.

[J MSE — Mask Set Enable: If this bit is high, it enables the functions of bits D, Dy, Dy.
This is a master control over all the interrupt masking bits. If this bt is low, bits Ds,
D,, and D, do not have any effect on the masks.

(1 M7.5—D, = 0, RST 7.5 is enabled.

= 1, RST 7.5 is masked or disabled.

O M6.5—D, = 0, RST 6.5 is enabled.
= 1, RST 6.5 is masked or disabled.
0O MS5.5—Dy, = 0, RST 5.5 is enabled.

= |, RST 5.5 is masked or disabled.

ADO-AD? 104

?

t
TEG

2

tl

AS-A15 “}(80H)

/T]

-
q

IO, 50,51 | X 01,1 00,1 101

L e e g g T

Fig. 12 Timing diagram for the IN instruction

7. 8085 INTERRUPTS

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its current program execution to

another program having higher priority. The interrupt signal may be given to the processor by any external peripheral
device.

The program or the routine that is executed upon interrupt is called interrupt service routine (ISR). After execution of ISR,

the processor must return to the interrupted program. Key features in the interrupt structure of any microprocessor are as
follows:

i Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt signal. This address is called
interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.
V. Timing of the interrupt signals.
Vi. Handling and storing of information about the interrupt program (status information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

Vectored and Non-Vectored Interrupts

Vectored interrupts require the IVA to be supplied by the external device that gives the interrupt
signal. This technique is vectoring, is implemented in number of ways.
Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

Maskable and Non-Maskable Interrupts

Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware
means.

Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are
executed.

Software and Hardware Interrupts
Software interrupts are special instructions, after execution transfer the control to predefined ISR.

Hardware interrupts are signals given to the processor, for recognition as an interrupt and execution of
the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

Save the PC content and information about current state (flags, registers etc) in the stack.
Load PC with the beginning address of an ISR and start to execute it.

Finish ISR when the return instruction is executed.

Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST) instructions. These are one byte
instructions that make the processor execute a subroutine at predefined locations. Instructions and their vector addresses
are given in Table 6.

Table 6 Software interrupts and their vector addresses

Instruction Machine hex code Interrupt Vector Address
RSTO Cc7 0000H
RST 1 CF 0008H
RST 2 D7 0010H
RST 3 DF 0018H
RST 4 E7 0020H
RST5 EF 0028H
RST 6 F7 0030H
RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call locations. The concept of priority does not
apply to software interrupts as they are inserted into the program as instructions by the programmer and executed by the
processor when the respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts — INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their IVA and priorities are given in

Table 7.
Table 7 Hardware interrupts of 8085
Interrupt Interrupt vector Maskable or non- Edge or level priority
address maskable Triggered

TRAP 0024H Non-makable Level 1
RST 7.5 003CH Maskable Rising edge 2
RST 6.5 0034H Maskable Level 3
RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5. The masking of 8085 interrupts
is done at different levels. Fig. 13 shows the organization of hardware interrupts in the 8085.

:

Interrupt vector addresses

Flip-flop

s

» 0024

> 003C

> 0034

» 002C

?@fﬁ

Get opcode
from hardware

Fig. 13 Interrupt

The Fig. 13 is explained by the following five points:

structure of 8085

i. The maskable interrupts are by default masked by the Reset signal. So no interrupt is recognized by the hardware
reset.
ii. The interrupts can be enabled by the El instruction.
iii. The three RST interrupts can be selectively masked by loading the appropriate word in the accumulator and
executing SIM instruction. This is called software masking.
iv. All maskable interrupts are disabled whenever an interrupt is recognized.
V. All maskable interrupts can be disabled by executing the DI instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt enable flip-flop in the
processor and the interrupts are disabled. To enable interrupts, El instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the SIM instruction reads the
content of accumulator and accordingly mask or unmask the interrupts. The format of control word to be stored in the
accumulator before executing SIM instruction is as shown in Fig. 14.

Bit position D7 D6 D5 D4 D3 D2 D1 DO
Name SOD SDE X R7.5 MSE M7.5 M6S5S MSS
Explanation Serial Serial Not Reset Mask set Setto Setto Setto
data data used RST7.5 enable— 1to 1to 1to
tobe enable— flip-flop Settol mask mask mask
sent set to tomask RST RST RST
1 for interrupts 7.5 6.5 5.5
sending

Fig. 14 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data on the SOD line of the processor. The
data to be send is placed in the MSB bit of the accumulator and the serial data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction is executed, the accumulator is
loaded with the current status of the interrupt masks and the pending interrupts. The format and the meaning of the data
stored in the accumulator after execution of RIM instruction is shown in Fig. 15.

In addition RIM instruction is also used to read the serial data on the SID pin of the processor. The data on the SID pin is
stored in the MSB of the accumulator after the execution of the RIM instruction.

Bit D7 D6 D5 D4 D3 D2 D1 Do
osith
Name SIb 175 16.5 I5.5 IE M7.5 M65 M55
Explanation Serial Setto1l Settol Settol Setto Setto 1 Set ol _Sel tol
input if RST ifRST ifRST | if if RST if RjST if RST
data 75is 65is 55is interrupts 7.5is 651 55is
inthe pending pending pending are masked masked masked
SID enabled
pin

Fig. 15 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after reset.

El : Enable interrupts
MVI A, 08H - Unmask the interrupts
SIM : Set the mask and unmask using SIM instruction

Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of each instruction. An interrupts signal
must be applied long enough for it to be recognized. The longest instruction of the 8085 takes 18 clock periods. So, the

interrupt signal must be applied for at least 17.5 clock periods. This decides the minimum pulse width for the interrupt
signal.

The maximum pulse width for the interrupt signal is decided by the condition that the interrupt signal must not be
recognized once again. This is under the control of the programmer.

8085 ASSEMBLY LANGUAGE PROGRAMS & EXPLANATIONS

Write an Assembly language 8085 program to sort an array of data in
ascending order

Data

8500 — FF (data 1)
8501 — 07 (data 2)
8502 — DD (data 3)
8503 — E6 (data 4)
8504 — 85 (data 5)
Counter = n-1

n= number of data

Program

LABEL INSTRUCTION COMMENT
MVI B, 04H B= 04H

Label3 MOV C,B B=C
LXI H,8500H HL =8500H

Label2 MOV A/M A=FFH
INX H Increment HL
MOV D,M D =07H
CMP D COMPARE A &D
JC Labell If carry=1 jump to labell
MOV M,A 8501 = FFH
DCXH Decrement HL
MOV M,D 8500 = 07H

INX H Increment HL
Labell DCRC Decrement C

JNZ Label2 If C = not zero jump to
label2

DCR B Decrement B

JNZ Label3 If B = not zero jump to
label3

HLT Stop

Write an Assembly language 8085 program to sort an array of data in

descending order
Data

8500 — FF (data 1)
8501 — 07 (data 2)
8502 — DD (data 3)
8503 — E6 (data 4)
8504 — 85 (data 5)
Counter = n-1

n= number of data

Program
LABEL INSTRUCTION COMMENT
MVI B, 04H B= 04H
Label3 MOV C,B B=C
LXI H,8500H HL =8500H
Label2 MOV A/M A=FFH
INX H Increment HL

MOV D,M D =07H

CMP D COMPAREA &D

JNC Labell If carry is not equal tol
jump to labell

MOV M,A 8501 = FFH

DCX H Decrement HL

MOV M,D 8500 = 07H

INX H Increment HL

Labell DCRC Decrement C

JNZ Label2 If C = not zero jump to
label2

DCR B Decrement B

JNZ Label3 If B = not zero jump to
label3

HLT Stop

Write an Assembly language 8085 program to convert binary numbers to
gray

1. STCis used to set carry flag (CY) to 1.

CMC is used to take 1’s compliment of the contents of carry flag (CY).
LDA 2050 is used load the data from address 2050 in A.

MOV B, A is used to move the data of A into B.

o ~ DN

RAR is used to rotate the bits of A along with carry flag (CY) to right one
time.

6. XRA B is used to perform XOR operation between the contents of register
A and B.

7. STA 3050 is used to store the contents of A to 3050.

8. HLT is used end the program

Write an Assembly language 8085 program to convert gray to binary
numbers

Explanation—
1. LDA 2050 is used to load the data from address 2050 in A
MVI C, 07 is used to move the data 07 in C
MOV B, A moves the data of Ato B
ANI 80 extracts the MSB(Most Significant Bit) of data available in A

RRC rotates the bits of A to right without carry

o g H w D

ANI 7F is used to take AND between data in A and 7F

7. XRA B takes XOR between the data present in A and B

8. DCR C is used to decrement the contents of C

9. JNZ 2008 is used to jump to address 2008 if ZF =0

10.STA 3050 is used to store the result at memory address 3050

11.HLT is used to end the program

CHAPTER 3

8085 Assembly L anguage Programs & Explanations

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 32H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address 4000H

HLT : Terminate program execution

Program 2:

LXIH : Load HL with 4000H

MVI M : Store 32H in memory location pointed by HL register pair
(4000H)

HLT : Terminate program execution

2. Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

LDA 2000H
accumulator

MOV B, A

LDA 4000H
accumulator

STA 2000H

MOV A, B

STA 4000H

Program 2:
LXI H 2000H

memory location 2000H.

LXI D 4000H

memory location 4000H.

MOV B, M
register.

LDAX D
register.

MOV M, A
location 2000H.

MOV A, B

STAXD
4000H.

HLT

: Get the contents of memory location 2000H into

: Save the contents into B register
: Get the contents of memory location 4000Hinto

: Store the contents of accumulator at address 2000H
: Get the saved contents back into A register
: Store the contents of accumulator at address 4000H
- Initialize HL register pair as a pointer to
: Initialize DE register pair as a pointer to
: Get the contents of memory location 2000H into B
: Get the contents of memory location 4000H into A

: Store the contents of A register into memory

: Copy the contents of B register into accumulator.
: Store the contents of A register into memory location

: Terminate program execution.

3.Sample problem

(4000H) = 14H
(4001H) = 89H
Result = 14H + 89H = 9DH Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

4. Statement: Subtract the contents of memory location 4001H from the memory location 2000H and place the
result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) =51H
(4001H) = 19H
Result =51H - 19H = 38H

Source program:

LXI H, 4000H : HL points 4000H
MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand
INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

5. Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit number in
memory locations 4002H and 4003H. The most significant eight bits of the two numbers to be added are in
memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most
significant byte in memory location 4005H.

Program - 5.a: Add two 16-bit numbers - Source Program 1
Sample problem:

(4000H) = 15H

(4001H) = 1CH

(4002H) = B7H

(4003H) = 5AH

Result = 1C15 + 5AB7H = 76CCH (4004H) =
CCH

(4005H) = 76H

Source Program 1:

LHLD 4000H : Get first 16-bit number in HL

XCHG : Save first 16-bit number in DE

LHLD 4002H : Get second 16-bit number in HL

MOV A, E : Get lower byte of the first number

ADD L : Add lower byte of the second number

MOV L, A : Store result in L register

MOV A, D : Get higher byte of the first number

ADCH : Add higher byte of the second number with CARRY
MOV H, A : Store result in H register

SHLD 4004H : Store 16-bit result in memory locations 4004H and
4005H.

HLT : Terminate program execution

6. Statement: Add the contents of memory locations 40001H and 4001H and place the result inthe memory
locations 4002Hand 4003H.

Sample problem:

(4000H) = 7FH
(4001H) = 89H

Result = 7FH + 89H = I08H (4002H) =
08H (4003H) = OIH

Source program:

LXI H, 4000H :HL Points 4000H

MOV A, M :Get first operand

INXH :HL Points 4001H

ADD M :Add second operand

INXH :HL Points 4002H

MOV M, A :Store the lower byte of result at 4002H

MVIA, 00 :Initialize higher byte result with 00H

ADC A :Add carry in the high byte result

INX H :HL Points 4003H
MOV M, A :Store the higher byte of result at 4003H
HLT :Terminate program execution

7.Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the 16-bit number in
memory locations 4000H and 4001H. The most significant eight bits of the two numbers are in memory
locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most significant
byte in memory location 4005H.

Sample problem

(4000H) = 19H

(4001H) = 6AH

(4004H) = 15H (4003H) = 5CH Result = 6A19H -
5C15H = OE04H (4004H) = 04H

(4005H) = OEH

Source program:

LHLD 4000H : Get first 16-bit number in HL

XCHG : Save first 16-bit number in DE

LHLD 4002H : Get second 16-bit number in HL

MOV A, E : Get lower byte of the first number

SUB L : Subtract lower byte of the second number

MOV L, A : Store the result in L register

MOV A, D : Get higher byte of the first number

SBB H : Subtract higher byte of second number with borrow
MOV H, A : Store 16-bit result in memory locations 4004H and
4005H.

SHLD 4004H : Store 16-bit result in memory locations 4004H and
4005H.

HLT : Terminate program execution

8. Statement: Find the I's complement of the number stored at memory location 4400H and store the
complemented number at memory location 4300H.

Sample problem:

(4400H) = 55H

Result = (4300B) = AAB
Source program:

LDA 4400B : Get the number

CMA : Complement number

STA 4300H : Store the result

HLT : Terminate program execution

9. Statement: Find the 2's complement of the number stored at memory location 4200H and store the
complemented number at memory location 4300H.
Sample problem:

(4200H) = 55H
Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H : Get the number

CMA : Complement the number
ADI, 01 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution

10. Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and store
result in memory location 4300H. Assume the least significant digit is stored at 4200H.

Sample problem: (4200H)
=04 (4201H) = 09
Result = (4300H) = 94

Source program

LDA 4201H : Get the Most significant BCD digit

RLC

RLC

RLC

RLC : Adjust the position of the second digit (09 is changed to

90)

ANI FOH : Make least significant BCD digit zero

MOV C, A : store the partial result

LDA 4200H : Get the lower BCD digit
ADD C : Add lower BCD digit
STA 4300H : Store the result

HLT : Terminate program execution

11. Statement: Two digit BCD number is stored in memory location 4200H. Unpack the BCD number and
store the two digits in memory locations 4300H and 4301H such that memory location 4300H will have lower
BCD digit.

Sample problem

(4200H) = 58
Result = (4300H) = 08 and (4301H) = 05
Source program

LDA 4200H : Get the packed BCD number
ANI FOH : Mask lower nibble

RRC

RRC

RRC

RRC : Adjust higher BCD digit as a lower digit
STA 4301H : Store the partial result

LDA 4200H : .Get the original BCD number
ANI OFH : Mask higher nibble

STA 4201H : Store the result

HLT : Terminate program execution

12. Statement:Read the program given below and state the contents of all registers afterthe
execution of each instruction in sequence.

Main program:

4000H LXI SP, 27FFH
4003H LXI H, 2000H
4006H LXI B, 1020H
4009H CALL SUB

400CH HLT

Subroutine program:

4100H SUB: PUSH B
4101H PUSHH
4102H LXI B, 4080H
4105H LXI H, 4090H
4108H SHLD 2200H
4109H DAD B
410CH POP H
410DH POP B
410EH RET

13. Statement:Write a program to shift an eight bit data four bits right. Assume that data is in register C.

Source program:

MOV A, C
RAR
RAR
RAR
RAR
MOV C, A
HLT

14. Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL register pair

Source program:

DADH : Adds HL data with HL data

15. Statement: Write a set of instructions to alter the contents of flag register in 8085.

PUSH PSW : Save flags on stack
POP H : Retrieve flags in 'L’
MOV A, L : Flags in accumulator
CMA : Complement accumulator

MOV L, A : Accumulator in 'L’

PUSHH : Save on stack
POP PSW : Back to flag register
HLT :Terminate program execution

16. Statement: Calculate the sum of series of numbers. The length of the series is in memory location4200H
and the series begins from memory location 4201H.

1. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at memory location 4300H.

2. Consider the sum to be 16 bit number. Store the sum at memory locations 4300H and 4301H

a. Sample problem

4200H = 04H

4201H =10H

4202H =45H

4203H =33H

4204H =22H
Result=10+41+30+12=H
4300H =H

Source program:

LDA 4200H

MOV C, A > Initialize counter

SUB A rsum=0

LXI H, 420IH - Initialize pointer

BACK: ADD M : SUM = SUM + data
INXH : increment pointer

DCRC : Decrement counter

JNZ BACK - if counter O repeat

STA 4300H : Store sum

HLT : Terminate program execution

b. Sample problem

4200H = 04H 420IH

= 9AH 4202H = 52H

4203H = 89H 4204H

=3EH

Result = 9AH + 52H + 89H + 3EH = H 4300H = B3H
Lower byte

4301H = 0IH Higher byte

Source program:

LDA 4200H
MOV C, A
LXI H, 4201H
SUB A
MOV B, A

BACK: ADD M
JNC SKIP
INR B

SKIP: INX H
DCRC
JNZ BACK
STA 4300H
MOV A, B
STA 4301H
HLT

17. Statement: Multiply two 8-bit numbers stored in memory locations 2200H and 2201H by repetitive addition

- Initialize counter
> Initialize pointer
:Sum low =0
:Sumhigh=0
: Sum = sum + data

: Add carry to MSB of SUM
: Increment pointer
: Decrement counter
: Check if counter 0 repeat
: Store lower byte

: Store higher byte
:Terminate program execution

and store the result in memory locations 2300H and 2301H.

Sample problem:

(2200H) = 03H
(2201H) = B2H

Result = B2H + B2H + B2H = 216H = 216H

(2300H) = 16H
(2301H) = 02H

Source program

LDA 2200H

MOV E, A

MVI D, 00

LDA 2201H

MOV C, A

LX 1 H, 0000 H
BACK: DAD D

DCR C

JINZ BACK

SHLD 2300H

HLT

: Get the first number in DE register pair

. Initialize counter
:Result=0
: Result = result + first number
: Decrement count
: If count O repeat
: Store result
: Terminate program execution

18. Statement:Divide 16 bit number stored in memory locations 2200H and 2201H by the 8 bit number stored at
memory location 2202H. Store the quotient in memory locations 2300H and 2301H and remainder in memory
locations 2302H and 2303H.

Sample problem (2200H) =
60H (2201H) = AOH
(2202H) = I12H
Result = A060H/12H = 8E8H Quotient and 10H remainder (2300H) = E8H
(2301H) = 08H
(2302H= 10H (2303H)

00H

Source program

LHLD 2200H : Get the dividend
LDA 2202H : Get the divisor
MOV C, A
LXI D, 0000H : Quotient=0
BACK: MOV A, L
SUB C : Subtract divisor
MOV L, A : Save partial result
JNC SKIP JifCY 1 jump
DCRH : Subtract borrow of previous subtraction
SKIP: INX D : Increment quotient
MOV A, H
CPI, 00 : Check if dividend < divisor
JNZ BACK - if no repeat
MOV A, L
CMPC
JNC BACK
SHLD 2302H : Store the remainder
XCHG
SHLD 2300H : Store the quotient
HLT : Terminate program execution

19. Statement:Find the number of negative elements (most significant bit 1) in a block of data. The length of
the block is in memory location 2200H and the block itself begins in memory location 2201H. Store the
number of negative elements in memory location 2300H

Sample problem

(2200H) = 04H

(2201H) = 56H
(2202H) = A9H
(2203H) = 73H
(2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program

LDA 2200H

MOV C, A : Initialize count

MVI B, 00 : Negative number = 0

LXI H, 2201H - Initialize pointer
BACK: MOV A, M : Get the number

ANI 80H : Check for MSB

JZ SKIP IfMSB=1

INRB : Increment negative number count
SKIP: INXH : Increment pointer

DCRC : Decrement count

JNZ BACK : If count O repeat

MOV A, B

STA 2300H : Store the result

HLT : Terminate program execution

20. Statement:Find the largest number in a block of data. The length of the block is in memory location 2200H
and the block itself starts from memory location 2201H.

Store the maximum number in memory location 2300H. Assume that the numbers in the block are all 8 bit
unsigned binary numbers.

Sample problem

(2200H) = 04
(2201H) = 34H
(2202H) = A9H
(2203H) = 78H
(2204H) =56H
Result = (2202H) = A9H

Source program

LDA 2200H
MOV C, A - Initialize counter
XRA A : Maximum = Minimum possible value = 0
LXI H, 2201H : Initialize pointer
BACK: CMP M . Is number> maximum

JNC SKIP : Yes, replace maximum

MOV A, M

SKIP: INX H
DCRC
JNZ BACK
STA 2300H : Store maximum number
HLT : Terminate program execution

21. Statement:Write a program to count number of I's in the contents of D register and store the count
in the B register.

Source program:

MVI B, 00H

MVI C, 08H

MOV A, D
BACK: RAR

JNC SKIP

INR B
SKIP: DCR C

JNZ BACK

HLT

22. Statement:Write a program to sort given 10 numbers from memory location 2200H in the ascending
order.

Source program:

MVI B, 09 : Initialize counter
START - LXI H, 2200H: Initialize memory pointer
MVI C, 09H : Initialize counter 2
BACK: MOV A, M : Get the number
INX H : Increment memory pointer
CMP M : Compare number with next number
JC SKIP - If less, don't interchange
JZ SKIP : If equal, don't interchange
MOV D, M
MOV M, A
DCXH
MOV M, D
INX H : Interchange two numbers
SKIP:DCR C : Decrement counter 2
JNZ BACK : If not zero, repeat
DCRB : Decrement counter 1
INZ START

HLT : Terminate program execution

23. Statement:Calculate the sum of series of even numbers from the list of numbers. The length of the list is in
memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 8 bit
number so you can ignore carries and store the sum at memory location 2Sample problem:

2200H= 4H
2201H= 20H
2202H= I5H
2203H= I13H
2204H=22H

Result 22I0H= 20 + 22 = 42H = 42H

Source program:

LDA 2200H
MOV C, A
MVI B, 00H
LXI H, 2201H
BACK: MOV A, M
ANI OIH
JNZ SKIP
MOV A, B
ADD M
MOV B, A
SKIP: INX H
DCR Cc
JINZ BACK
STA 2210H
HLT

24. Statement:Calculate the sum of series of odd numbers from the list of numbers. The length of the list is in
memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 16-bit.
Store the sum at memory locations 2300H and 2301H.

Sample problem:

2200H = 4H
2201H= 9AH
2202H= 52H
2203H= 89H
2204H=3FH

Result = 89H + 3FH = C8H 2300H= H
Lower byte 2301H = H Higher byte

Source program

BACK:

LDA 2200H
MOV C, A
LXI H, 2201H
MVI E, 00
MOV D, E
MOV A, M
ANI OIH

JZ SKIP
MOV A, E
ADD M
MOV E, A
JNC SKIP
INRD

SKIP: INX H

DCRC

. Initialize counter
: Initialize pointer
:Sumlow =0
:Sumhigh=0
: Get the number
: Mask Bit 1 to Bit7
: Don't add if number is even
: Get the lower byte of sum
: Sum = sum + data
: Store result in E register

: Add carry to MSB of SUM
: Increment pointer
: Decrement

25. Statement:Find the square of the given numbers from memory location 6100H and store the result from
memory location 7000H

Source Program:

BACK:

LXI H, 6200H
LXI D, 6100H
LXI B, 7000H
LDAX D
MOV L, A
MOV A, M
STAXB

INX D

INX B

MOV A, C
CP1 05H

JINZ BACK
HLT

- Initialize lookup table pointer
> Initialize source memory pointer
: Initialize destination memory pointer
: Get the number
: A point to the square
: Get the square
: Store the result at destination memory location
: Increment source memory pointer
: Increment destination memory pointer

: Check for last number
: If not repeat
: Terminate program execution

26. Statement: Search the given byte in the list of 50 numbers stored in the consecutive memory locations and
store the address of memory location in the memory locations 2200H and 2201H. Assume byte is in the C
register and starting address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.

Source program:

BACK:

LX 1 H, 2000H
MVI B, 52H
MOV A, M
CMP C

JZ LAST

INX H
DCRB

IJNZ B

LXI H, 0000H
SHLD 2200H
JMP END

LAST: SHLD 2200H
END: HLT

: Initialize memory pointer 52H
. Initialize counter
: Get the number
: Compare with the given byte
: Go last if match occurs
: Increment memory pointer
: Decrement counter

: 1 f not zero, repeat

: Store 00 at 2200H and 2201H
: Store memory address
: Stop

27. Statement: Two decimal numbers six digits each, are stored in BCD package form. Each number occupies
a sequence of byte in the memory. The starting address of first number is 6000H Write an assembly language
program that adds these two numbers and stores the sum in the same format starting from memory location

6200H

Source Program:

BACK:

LXI H, 6000H
LXI D, 6100H
LXI B, 6200H
STC

CMC

LDAX D
ADD M

DAA

STAX.B

INX H

INX D

INX B

MOV A, L
CP1 06H
JINZ BACK
HLT

> Initialize pointer | to first number
- Initialize pointer2 to second number
> Initialize pointer3 to result

:Carry=0
: Get the digit
: Add two digits
: Adjust for decimal

: Store the result

: Increment pointer 1

> Increment pointer2
: Increment result pointer

: Check for last digit
. If not last digit repeat
: Terminate program execution

28. Statement: Add 2 arrays having ten 8-bit numbers each and generate a third array of result. It is necessary
to add the first element of array 1 with the first

element of array-2 and so on. The starting addresses of array |, array2 and array3 are 2200H, 2300H and
2400H, respectively.

Source Program:

BACK:

LXI H, 2200H
LXI B, 2300H
LXI D, 2400H
LDAX B
ADD M
STAXD

INX H

INX B

INX D

MOV A, L
CPI 0AH
JNZ BACK
HLT

: Initialize memory pointer 1
> Initialize memory pointer 2
- Initialize result pointer
: Get the number from array 2
: Add it with number in array 1
: Store the addition in array 3
: Increment pointer 1
: Increment pointer2
: Increment result pointer

: Check pointer 1 for last number
: If not, repeat
: Stop

29. Statement: Write an assembly language program to separate even numbers from the given list of 50
numbers and store them in the another list starting from 2300H. Assume starting address of 50 number list

is 2200H

Source Program:

LXI H, 2200H
LXI D, 2300H
MVI C, 32H

BACK:MOV A, M

ANI OIH
JNZ SKIP
MOV A, M
STAX

INX D

SKIP: INX H

DCRC
JNZ BACK
HLT

> Initialize memory pointer |
> Initialize memory pointer2
> Initialize counter
: Get the number

: Check for even number

1 If ODD, don't store
: Get the number
: Store the number in result list
: Increment pointer 2
: Increment pointer |
: Decrement counter
. If not zero, repeat
: Stop

30. Statement: Write assembly language program with proper comments for the following:

A block of data consisting of 256 bytes is stored in memory starting at 3000H. This block is to be shifted
(relocated) in memory from 3050H onwards. Do not shift the block or part of the block anywhere else in the
memory.

Source Program:

Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it is necessary to transfer last byte
first and first byte last.

MVI C, FFH - Initialize counter

LX I H, 30FFH - Initialize source memory pointer 314FH

LXI D, 314FH : Initialize destination memory pointer
BACK: MOV A, M : Get byte from source memory block

STAX D : Store byte in the destination memory block

DCXH : Decrement source memory pointer

DCX : Decrement destination memory pointer

DCRC : Decrement counter

JNZ BACK . If counter O repeat

HLT : Stop execution

31. Statement: Add even parity to a string of 7-bit ASCII characters. The length of the string is inmemory
location 2040H and the string itself begins in memory location 2041H. Place even parity in the most
significant bit of each character.

Source Program:

LXI H, 2040H
MOV C M : Counter for character
REPEAT:INX H : Memory pointer to character
MOV AM : Character in accumulator
ORA A : ORing with itself to check parity.
JPO PAREVEN : If odd parity place
ORI 80H even parity in D7 (80).
PAREVEN:MOV M, A : Store converted even parity character.
DCRC : Decrement counter.
JINZ REPEAT : If not zero go for next character.
HLT

32. Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find number of negative, zero and
positive numbers from this list and store these results in memory locations 7000H, 7001H, and 7002H
respectively

Source Program:

LXI H, 6000H - Initialize memory pointer

MVI C, 00H - Initialize number counter

MVI B, 00H - Initialize negative number counter

MVI E, OOH . Initialize zero number counter
BEGIN:MOV A, M : Get the number

CPI OOH 2 If number =0

JZ ZERONUM : Goto zeronum

ANI : If MSB of number = li.e. if

JNZ NEGNUM number is negative goto NEGNUM
INRD : otherwise increment positive number counter
JMP LAST
ZERONUM:INR E : Increment zero number counter
JMP LAST
NEGNUM:INR B : Increment negative number counter
LAST:INXH : Increment memory pointer
INRC : Increment number counter
MOV A, C
CPI 32H : If number counter = 5010 then
JINZ BEGIN : Store otherwise check next number
LXI H, 7000 - Initialize memory pointer.
MOV M, B : Store negative number.
INXH
MOV M, E . Store zero number.
INXH
MOV M, D : Store positive number.
HLT : Terminate execution

33. Statement:Write an 8085 assembly language program to insert a string of four characters from the tenth
location in the given array of 50 characters

Solution:

Step 1: Move bytes from location 10 till the end of array by four bytes downwards.

Step 2: Insert four bytes at locations 10, 11, 12 and 13.
Source Program:

LXI H, 2131H : Initialize pointer at the last location of array.
LXI D, 2I135H : Initialize another pointer to point the last
location of array after insertion.

AGAIN: MOV A, M : Get the character

STAXD
DCXD
DCXH
MOV A, L
CPI1 05H
JNZ AGAIN

: Store at the new location

: Decrement destination pointer
: Decrement source pointer

: [check whether desired
bytes are shifted or not]
- if not repeat the process

INX H : adjust the memory pointer

LXI D, 2200H : Initialize the memory pointer to point the string to
be inserted
REPE: LDAX D : Get the character

MOV M, A : Store it in the array

INX D : Increment source pointer

INX H : Increment destination pointer

MOV A, E : [Check whether the 4 bytes

CPI1 04 are inserted]

JNZ REPE : if not repeat the process

HLT : stop

34. Statement:Write an 8085 assembly language program to delete a string of 4 characters from the tenth
location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4 characters i.e. from location 10
onwards.

Source Program:

LXI H, 210DH :Initialize source memory pointer at the 14thlocation
of the array.

LXI D, 2109H : Initialize destn memory pointer at the 10th location
of the array.

MOV A, M : Get the character

STAXD : Store character at new location

INX D : Increment destination pointer

INX'H : Increment source pointer

MOV A, L : [check whether desired

CPI 32H bytes are shifted or not]

JNZ REPE . if not repeat the process

HLT : stop

35. Statement:Multiply the 8-bit unsigned number in memory location 2200H by the 8-bit unsigned number in
memory location 2201H. Store the 8 least significant bits of the result in memory location 2300H and the 8
most significant bits in memory location 2301H.

Sample problem:

(2200) =1100 (0OCH)
(2201) = 0101 (05H)
Multiplicand =1100 (1210)
Multiplier =0101 (510)
Result =12 x5 =(6010)

Source program

LXI H, 2200 - Initialize the memory pointer

MOV E, M : Get multiplicand

MVI D, 00H : Extend to 16-bits

INXH : Increment memory pointer

MOV A, M : Get multiplier

LXI H, 0000 : Product =0

MVI B, 08H : Initialize counter with count 8
MULT: DAD H : Product = product x 2

RAL

JNC SKIP . Is carry from multiplier 1 ?

DAD D : Yes, Product =Product + Multiplicand
SKIP: DCR B : Is counter = zero

JNZ MULT : no, repeat

SHLD 2300H : Store the result

HLT : End of program

36. Statement:Divide the 16-bit unsigned number in memory locations 2200H and 2201H (most significant bits
in 2201H) by the B-bit unsigned number in memory location 2300H store the quotient in memory location
2400H and remainder in 2401H

Assumption: The most significant bits of both the divisor and dividend are zero.

Source program

MVI E, 00 : Quotient=0
LHLD 2200H : Get dividend
LDA 2300 : Get divisor
MOV B, A : Store divisor
MVI C, 08 :Count=38

NEXT: DAD H : Dividend = Dividend x 2
MOV A, E
RLC

MOV E, A : Quotient = Quotient x 2

MOV A, H

SUB B : Is most significant byte of Dividend > divisor

JC SKIP 2 No, go to Next step

MOV H, A : Yes, subtract divisor

INRE : and Quotient = Quotient + 1
SKIP:DCR C : Count = Count - 1

JNZ NEXT - Is count =0 repeat

MOV A, E

STA 2401H : Store Quotient

Mov A, H

STA 2410H : Store remainder

HLT : End of program

37.DAA instruction is not present. Write a sub routine which will perform the same task as DAA.

Sample Problem:

Execution of DAA instruction:

I the value of the low order four bits (03-00) in the accumulator is greater than 9 or if auxiliary carry flag
is set, the instruction adds 6 '(06) to the low-order four bits.

If the value of the high-order four bits (07-04) in the accumulator is greater than 9 or if carry flag is set,
the instruction adds 6(06) to the high-order four bits.

Source Program:

LXI SP, 27FFH - Initialize stack pointer

MOV E, A : Store the contents of accumulator

ANI OFH : Mask upper nibble

CPIOAH : Check if number is greater than 9

JC SKIP 2 if no go to skip

MOV A, E : Get the number

ADI 06H : Add 6 in the number

JMP SECOND : Go for second check
SKIP: PUSH PSW : Store accumulator and flag contents in stack

POP B : Get the contents of accumulator in B register and
flag register contents in C register

MOV A, C : Get flag register contents in accumulator

ANI 10H : Check for bit 4

JZ SECOND : if zero, go for second check

MOV A, E : Get the number

ADI 06 : Add 6 in the number

SECOND: MOV E, A

ANI FOH
RRC
RRC
RRC

: Store the contents of accumulator
: Mask lower nibble

RRC : Rotate number 4 bit right
CPI 0AH : Check if number is greater than 9
JC SKIPI ;ifnogotoskip 1
MOV A, E : Get the number
ADI 60 H : Add 60 H in the number
JMP LAST : Go to last
SKIP1: JNC LAST sif carry flag = 0 go to last
MOV A E : Get the number
ADI 60 H : Add 60 H in the number
LAST: HLT

38.tement:To test RAM by writing '1" and reading it back and later writing '0" (zero) and reading it back.
RAM addresses to be checked are 40FFH to 40FFH. In case of any error, it is indicated by writing 01H at

port 10H

Source Program:

LXI H, 4000H - Initialize memory pointer
BACK: MVI M, FFH : Writing '1" into RAM

MOV A, M : Reading data from RAM

CPI FFH : Check for ERROR

JNZ ERROR : If yes go to ERROR

INXH : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACK : If not last, repeat

LXI H, 4000H : Initialize memory pointer
BACKI: MVI M, OCH : Writing '0" into RAM

MOV A, M : Reading data from RAM

CPI1 OOH : Check for ERROR

INXH : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACKI : If not last, repeat

HLT : Stop Execution

39. tement:Write an assembly language program to generate fibonacci number

Source Program:

MVI D, COUNT MVI Initialize counter
B, 00 MVI C, 01 Initialize variable to store previous number
Initialize variable to store current number

MOV A, B :[Add two numbers]

BACK: ADD C :[Add two numbers]
MOV B, C : Current number is now previous number
MOV C, A : Save result as a new current number
DCRD : Decrement count
JNZ BACK > if count 0 go to BACK
HLT : Stop

40. tement:Write a program to generate a delay of 0.4 sec if the crystal frequency is 5 MHz

Calculation: In 8085, the operating frequency is half of the crystal
frequency,
ie.Operating frequency =5/2=25MHz
Time for one T -state =
Number of T-states required =
=1x106

Source Program:

LXI B, count : 16 - bit count

BACK: DCX B : Decrement count

MOV A, C

ORAB : Logically OR Band C

JNZ BACK - If result is not zero repeat

41.tement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

START:MVI B, 00 ;Flag=0
LXI H, 4150 ; Count = length of array
MOV C, M
DCRC ; No. of pair = count -1
INX H ; Point to start of array
LOOP:MOV A, M ; Get kth element
INX H
CMP M ; Compare to (K+1) th element
JNC LOOP 1 ; No interchange if kth >= (k+1) th
MOV D, M ; Interchange if out of order
MOV M, A ;
DCRH
MOV M, D
INX H
MVI B, 01H ; Flag=1
LOOP 1:DCRC ; count down
JNZ LOOP ;

DCR B ;isflag =1?

JZ START ; do another sort, if yes
HLT ; If flag = 0, step execution

42.tement: Transfer ten bytes of data from one memory to another memory block. Source memory block starts
from memory location 2200H where as destination memory block starts from memory location 2300H

Source Program:

LXI H, 4150 : Initialize memory pointer
MVI B, 08 : count for 8-bit
MVI A, 54
LOOP : RRC
JC LOOP1
MVI M, 00 : store zero it no carry
JMP COMMON
LOOP2: MVI M, 01 : store one if there is a carry
COMMON: INX H
DCRB : check for carry
JNZ LOOP
HLT : Terminate the program

43.tement: Program to calculate the factorial of a number between 0 to 8

Source program

LXI SP, 27FFH ; Initialize stack pointer
LDA 2200H ; Get the number
CPI 02H ; Check if number is greater than 1
JC LAST
MVI D, 00H ; Load number as a result
MOV E, A
DCRA
MOV C,A ; Load counter one less than number
CALL FACTO ; Call subroutine FACTO
XCHG ; Get the result in HL
SHLD 2201H ; Store result in the memory
JMP END

LAST: LXI H, 000IH ; Store result = 01

END: SHLD 2201H
HLT

44. tement:Write a program to find the Square Root of an 8 bit binary number. The binary number is stored in
memory location 4200H and store the square root in 4201H.

Source Program:

LDA 4200H
MOV B,A
MVI C,02H
CALL DIV

in D-reg

REP: MOV E,D

MOV AB
MOV C,D
CALL DIV

value(Y/X) in D-reg
MOV A, D
ADD E
MVI C, 02H
CALL DIV

in D-reg.This is XNEW
MOV A, E
CMP D
JINZ REP
STA 4201H
HLT

: Get the given data(Y) in A register

: Save the data in B register

: Call the divisor(02H) in C register
: Call division subroutine to get initial value(X)

: Save the initial value in E-reg

: Get the dividend(Y) in A-reg
: Get the divisor(X) in C-reg

: Call division subroutine to get initial

: Move Y/X in A-reg
: Get the((Y/X) + X) in A-reg
: Get the divisor(02H) in C-reg
: Call division subroutine to get ((Y/X) + X)/2

: Get Xin A-reg
: Compare X and XNEW

: If XNEW is not equal to X, then repeat

: Save the square root in memory
: Terminate program execution

45. tement:Write a simple program to Split a HEX data into two nibbles and store it in memory

Source Program:

LXI H, 4200H
MOV B,.M
MOV AB
ANI OFH
INXH
MOV M,A
MOV A,B
ANI FOH
RRC

RRC

RRC

RRC
INXH
MOV M,A
HLT

: Set pointer data for array
: Get the data in B-reg

: Copy the data to A-reg
: Mask the upper nibble

: Increment address as 4201
: Store the lower nibble in memory

: Get the data in A-reg

: Bring the upper nibble to lower nibble position

: Store the upper nibble in memory
: Terminate program execution

46. tement: Add two 4 digit BCD numbers in HL and DE register pairs and store result in memory locations,
2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

(HL) =3629 (DE)

=4738
Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1
:.add 06
61 + 06 = 67

Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so add 6. 7D + 06 = 83
Result = 8367

Source program

MOV A, L : Get lower 2 digits of no. 1

ADD E : Add two lower digits

DAA : Adjust result to valid BCD

STA 2300H : Store partial result

MOV A, H : Get most significant 2 digits of number
ADC D : Add two most significant digits
DAA : Adjust result to valid BCD

STA 2301H : Store partial result

HLT : Terminate program execution

47.tement: Subtract the BCD number stored in E register from the number stored in the D register.

Source Program:

MVI A,99H

SUB E : Find the 99's complement of subtrahend

INR A : Find 100's complement of subtrahend

ADD D : Add minuend to 100's complement of subtrahend
DAA : Adjust for BCD

HLT : Terminate program execution

48. tement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

MVI C, Multiplier
MVI B, 00
LXI H, 0000H
MVI E, multiplicand
MVI D, 00H
BACK: DAD D
MOV A, L
ADI, 00H
DAA
MOV L, A
MOV A, H
ACI, 00H
DAA
MOV H, A
MOV A, B
ADI 01H
DAA
MOV B,A
CMPC
JNZ BACK
HLT

: Load BCD multiplier
- Initialize counter
: Result = 0000
: Load multiplicand
: Extend to 16-bits
: Result Result + Multiplicand

: Get the lower byte of the result

: Adjust the lower byte of result to BCD.
: Store the lower byte of result

: Get the higher byte of the result

: Adjust the higher byte of the result to BCD

: Store the higher byte of result.

. [Increment
: counter

: adjust it to BCD and
: store it]

: Compare if count = multiplier
. if not equal repeat

: Stop

6. INSTRUCTION EXECUTION AND TIMING DIAGRAM:

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The opcode is a
command such as ADD and the operand is an object to be operated on, such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an instruction. An instruction cycle
consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory or 1/O device. A machine cycle
consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of instructions or programs in a
processor.

To execute a program, 8085 performs various operations as:

e Opcode fetch

e Operand fetch

e Memory read/write
e 1/O read/write

External communication functions are:

e Memory read/write
e |/O read/write
e Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this cycle is given in Fig. 7.

The following points explain the various operations that take place and the signals that are changed during the execution of
opcode fetch machine cycle:

T1 clock cycle

i The content of PC is placed in the address bus; ADO - AD7 lines contains lower bit address and A8 — A15
contains higher bit address.

i. 10/M signal is low indicating that a memory location is being accessed. S1 and SO also changed to the levels as
indicated in Table 1.
il ALE is high, indicates that multiplexed ADO — AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device load the data bus with the
contents of the location addressed by the processor.

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the instruction register.
ii. The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the necessary control signals to
execute the instruction. Based on the instruction further operations such as fetching, writing into memory etc

takes place.
SIGNAL 1 n 1 ™
o N_/ NN NS
A8 A15 :>< Higher-order mamory address
Lower-order
ADO-ADT - > OpoodaliD7-D0)
ALE /——\
10, $1.50 >< \IOM-O. St=18001 e
; / T TR LR
R‘l‘) ..\ i / TR "'Cl‘y tl,}'
RS . oraya b 'i-‘=".j\' o

Fig. 7 Timing diagram for opcode fetch cycle
Memory Read Machine Cycle:
The memory read cycle is executed by the processor to read a data byte from memory. The machine cycle is exactly same

to opcode fetch except: a) It has three T-states b) The SO signal is set to 0. The timing diagram of this cycle is given in Fig.
8.

SIGNAL

| CLOCK

AB-A15

ADO-AD7

ALE

IOM, 51,80

T 7 13
\—/__/
X T vep—
amory sadre D000 Dy
1
N\ |
|
>< I0fﬁ=0.\ $1=180=0

Fig. 8 Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory

location. The processor takes three T-states and WR signal is made low. The timing diagram of this cycle is given in Fig.

9.

I/0 Read Cycle:

The 1/0 read cycle is executed by the processor to read a data byte from 1/O port or from peripheral, which is I/O mapped
in the system. The 8-bit port address is placed both in the lower and higher order address bus. The processor takes three T-

states to execute this machine cycle. The timing diagram of this cycle is given in Fig. 10.

!/ SIGNAL

CLOCK

A8-A15

ADO-ADT

ALE

10/M, 81, 50

(Datal(D7-D0) _>
>< 10M=0\ $1=050=1

Fig. 9 Timing diagram for memory write machine cycle

SIGHAL T 7 ™
CLOCK _/_J\‘_/—_
AB-A1S :>< /O port addross
ADO-AD? Datal(07-D0) >
ALE /__\

)\
0, $1, 50 :>(ofi=0.| [s1=150=0
RD

Fig. 10 Timing diagram 1/O read machine cycle

I/0 Write Cycle:

The /O write cycle 1s executed by the processor to write a data byte to 'O port or to a peripheral. which is 'O mapped m

the system. The processor takes three T-states to execute this machine cycle. The timing diagram of this cycle is given in
Fig. 11.

% aam. —_ ___r-_
_! soua | 1 | Tz o
|- - t -
|
aocx v/
\
AB-A15 >< Port address
ADO-ADT I Port address Data|(D7-D0) } '
ALE /—\
IO, $1, S0 }(oM =1, $12080s1

Fig. 11 Timing diagram I/O write machine cvycle

Instruction cycle in 8085 microprocessor

Time required to execute and fetch an entire instruction is called instruction cycle. It consists:

e Fetch cycle — The next instruction is fetched by the address stored in program counter (PC) and
then stored in the instruction register.

o Decode instruction — Decoder interprets the encoded instruction from instruction register.

e Reading effective address — The address given in instruction is read from main memory and
required data is fetched. The effective address depends on direct addressing mode or indirect
addressing mode.

o Execution cycle — consists memory read (MR), memory write (MW), input output read (IOR)
and input output write (IOW)

The time required by the microprocessor to complete an operation of accessing memory or input/output
devices is called machine cycle. One time period of frequency of microprocessor is called t-state. A t-state
is measured from the falling edge of one clock pulse to the falling edge of the next clock pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

< Machine Cycle 1 Machine Cycle2—>
t1 t2 t3 t4 t5 t6 t7
Fetch Cycle Execution Cycle %

Instruction Cycle

Instruction cycle in 8085 microprocessor

Timing diagram for fetch cycle or opcode fetch:

ADO
AD7

ADS8
AD15

tl t2 t3 t4
Decoding
05 OPCODE
2

10

/M=0 SO

Timing diagram for opcode fetch

Above diagram represents:

used.

e 20 - higher bit of address where opcode is stored. Multiplexed address and data bus AD8-AD15
are used.

e ALE - Provides signal for multiplexed address and data bus. If signal is high or 1, multiplexed
address and data bus will be used as address bus. To fetch lower bit of address, signal is 1 so that
multiplexed bus can act as address bus. If signal is low or 0, multiplexed bus will be used as data
bus. When lower bit of address is fetched then it will act as data bus as the signal is low.

e RD (low active) — If signal is high or 1, no data is read by microprocessor. If signal is low or 0,

data is read by microprocessor.

e WR (low active) — If signal is high or 1, no data is written by microprocessor. If signal is low or

0, data is written by microprocessor.

05 — lower bit of address where opcode is stored. Multiplexed address and data bus ADO-AD7 are

e |O/M (low active) and S1, SO — If signal is high or 1, operation is performing on input output. If
signal is low or O, operation is performing on memory.

Machine Cycle Status Control Signals
Io/mMm | S1 S0 RD WR INTA

Opcode Fetch 0 1 1 0 1 1
Memory Read 0 1 0 0 1 1
Memory Write 0 0 1 1 0 1
1/0 Read 1 1 0 0 1 1
|/O Write 1 0 1 1 0 1
Interrupt 1 1 1 1 1 0
Acknowledge

HALT Z 0 0 Z Z 1
HOLD Z X X Z 1
RESET Z X X Z Z 1

Where Z is tri state (pin neither connected to supply nor ground. High impedance)
and X represents do not care.

8085 machine cycle status and control signals

<> Darshan

Institute of Engineering & Technology

1. Introduction to Microprocessor

Definition:
“The microprocessor is a multipurpose, clock driven, register based, digital-integrated
circuit which accepts binary data as input, processes it according to instructions stored in
its memory, and provides results as output.”
“Microprocessor is a computer Central Processing Unit (CPU) on a single chip that
contains millions of transistors connected by wires.”

Introduction:
A microprocessor is designed to perform arithmetic and logic operations that make use
of small number-holding areas called registers.
Typical microprocessor operations include adding, subtracting, comparing two numbers,
and fetching numbers from one area to another.

2. Components of Microprocessor
- Microprocessor is capable of performing various computing functions and making
decisions to change the sequence of program execution.
The microprocessor can be divided into three segments as shown in the figure,
Arithmetic/logic unit (ALU), register array, and control unit.
These three segment is responsible for all processing done in a computer

Arithmetic]
. Register
and Logical
) Array
Unit (ALU)
Control Unit

Figure: Components of Microprocessor

Arithmetic and logic unit (ALU)
It is the unit of microprocessor where various computing functions are performed on
the data.
It performs arithmetic operations such as addition, subtraction, and logical operations
such as OR,AND, and Exclusive-OR.
It is also known as the brain of the computer system.

€glited with the demo version of
Y Inffix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

Register array
It is the part of the register in microprocessor which consists of various registers
identified by letters such as B, C, D, E, H, and L.
Registers are the small additional memory location which are used to store and transfer
data and programs that are currently being executed.

Control unit
The control unit provides the necessary timing and control signals to all the operations
in the microcomputer.
It controls and executes the flow of data between the microprocessor, memory and
peripherals.
The control bus is bidirectional and assists the CPU in synchronizing control signals to
internal devices and external components.
This signal permits the CPU to receive or transmit data from main memory.

3. System bus (data, address and control bus).
This network of wires or electronic pathways is called the 'Bus'.
A system bus is a single computer bus that connects the major components of a computer
system.
It combines the functions of a data bus to carry information, an address bus to determine
where it should be sent, and a control bus to determine its operation.
The technique was developed to reduce costs and improve modularity.

CPU Memory Input/Qutput
3 F 3 L * &

P - - - = - - = T
“'.. h L J \‘
i | Control Bus | !
: :
: v :
I | AddressBus | i
! 1
1
: v A 4 Y i
i | Data Bus | I
i !

1
% System Bus '

- - - - B

Figure: System Bus

€glited with the demo version of
() Inffix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

Address Bus

It is a group of wires or lines that are used to transfer the addresses of Memory or 1/O
devices.

It is unidirectional.

The width of the address bus corresponds to the maximum addressing capacity of the
bus, or the largest address within memory that the bus can work with.

The addresses are transferred in binary format, with each line of the address bus carrying
a single binary digit.

Therefore the maximum address capacity is equal to two to the power of the number of

lines present (2”lines).
Data Bus

It is used to transfer data within Microprocessor and Memory/Input or Output devices.
It is bidirectional as Microprocessor requires to send or receive data.
Each wire is used for the transfer of signals corresponding to a single bit of binary data.

As such, a greater width allows greater amounts of data to be transferred at the same

time.
Control Bus
Microprocessor uses

control

with the selected memory location.
Some control signals are Read, Write and Opcode fetch etc.

Various operations are performed by microprocessor with the help of control bus.

bus to process data,

what to do

This is a dedicated bus, because all timing signals are generated according to control signal.

4. Microprocessor systems with bus organization

Figure: Microprocessor systems with bus organization

Input/Output
Arithmetic
and Register 4}
Logical Array
Unit (ALU) < Svst{m} Bus >
Control Unit Memory
ROM R/WM

€glited with the demo version of
Inffix Pro PDF €ditor

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

To design any meaningful application microprocessor requires support of other auxiliary
devices.

In most simplified form a microprocessor based system consist of a microprocessor, 1/0
(input/output) devices and memory.

These components are interfaced (connected) with microprocessor over a common
communication path called system bus. Typical structure of a microprocessor based
system is shown in Figure.

Here, microprocessor is master of the system and responsible for executing the program
and coordinating with connected peripherals as required.

Memory is responsible for storing program as well as data. System generally consists of
two types of memories ROM (Read only and non-volatile) and RAM (Read/Write and
volatile).

I/O devices are used to communicate with the environment. Keyboard can be example of
input devices and LED, LCD or monitor can be example of output device.

Depending on the application level of sophistication varies in a microprocessor based
systems. For example: washing machine, computer.

€glited with the demo version of
() Inffix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

1.

Ans.

Explain Classification of Memory

Memory
[
| 1
Prime Storage Memory
Memory Secondary Backup
Storage Storage
l | 1 1
Semi-random Serial
N ROM
Memory Access Access
Erasable | | Permanent Disks
: - Memory Memory
Stakic Eyfiamic | Magnetic
R/W M R/WM Floppy Tape
EPROM Hard
Non- Integrated EE-PROM Masked ROM CD-ROM
Volatile RAM Flash M PROM Zip Disk

Figure: Classification of Memory

ROM (Read Only Memory):
The first classification of memory is ROM. The data in this memory can only be read, no writing
is allowed. It is used to store permanent programs. It is a nonvolatile type of memory.

The classification of ROM memory is as follows:
1. Masked ROM: the program or data are permanently installed at the time of

manufacturing as per requirement. The data cannot be altered. The process of
permanent recording is expensive but economic for large quantities.

PROM (Programmable Read Only Memory): The basic function is same as that of
masked ROM. but in PROM, we have fuse links. Depending upon the bit pattern, the
fuse can be burnt or kept intact. This job is performed by PROM programmer.

To do this, it uses high current pulse between two lines. Because of high current, the
fuse will get burnt; effectively making two lines open. Once a PROM is programmed
we cannot change connections, only a facility provided over masked ROM is, the user
can load his program in it. The disadvantage is a chance of re-growing of the fuse and
changes the programmed data because of aging.

€dited with the demo version of
Infix Aro PDF €ditor

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

3. EPROM (Erasable Programmable Read Only Memory): the EPROM is programmable
by the user. It uses MOS circuitry to store data. They store 1’s and 0’s in form of charge.
The information stored can be erased by exposing the memory to ultraviolet light
which erases the data stored in all memory locations. For ultraviolet light, a quartz
window is provided which is covered during normal operation. Upon erasing it can be
reprogrammed by using EPROM programmer. This type of memory is used in a project
developed and for experiment use. The advantage is it can be programmed erased and
reprogrammed. The disadvantage is all the data get erased even if you want to change
single data bit.

4. EEPROM: EEPROM stands for electrically erasable programmable read only memory.
This is similar to EPROM except that the erasing is done by electrical signals instead of
ultraviolet light. The main advantage is the memory location can be selectively erased
and reprogrammed. But the manufacturing process is complex and expensive so do
not commonly used.

R/W Memory (Read/Write Memory):

The RAM is also called as read/write memory. The RAM is a volatile type of memory. It
allows the programmer to read or write data. If the user wants to check the execution of any
program, user feeds the program in RAM memory and executes it. The result of execution is
then checked by either reading memory location contents or by register contents.

Following is the classification of RAM memory.
It is available in two types:

1. SRAM (Static RAM): SRAM consists of the flip-flop; using either transistor or MOS.
for each bit we require one flip-flop. Bit status will remain as it is; unless and until
you perform next write operation or power supply is switched off.

Advantages of SRAM:
Fast memory (less access time)
Refreshing circuit is not required.
Disadvantages of SRAM:
Low package density
Costly

€dited with the demo version of
) Infix Aro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

2. DRAM (Dynamic RAM): In this type of memory a data is stored in form of charge in
capacitors. When data is 1, the capacitor will be charged and if data is O, the
capacitor will not be charged. Because of capacitor leakage currents, the data will
not be held by these cells. So the DRAMs require refreshing of memory cells. It is a
process in which same data is read and written after a fixed interval.

Advantages of DRAM:

High package density
Low cost
Disadvantages of DRAM:
Required refreshing circuit to maintain or refresh charge on the capacitor, every
after few milliseconds.

Secondary Memory

Magnetic Disk: The Magnetic Disk is Flat, circular platter with metallic coating that
is rotated beneath read/write heads. It is a Random access device; read/write head
can be moved to any location on the platter

Floppy Disk: These are small removable disks that are plastic coated with magnetic
recording material. Floppy disks are typically 3.5” in size (diameter) and can hold
1.44 MB of data. This portable storage device is a rewritable media and can be
reused a number of times. Floppy disks are commonly used to move files between
different computers. The main disadvantage of floppy disks is that they can be
damaged easily and, therefore, are not very reliable. The following figure shows
an example of the floppy disk. Figure 3 shows a picture of the floppy disk.

Hard Disk: Another form of auxiliary storage is a hard disk. A hard disk consists of
one or more rigid metal plates coated with a metal oxide material that allows data
to be magnetically recorded on the surface of the platters. The hard disk platters
spin at 5 a high rate of speed, typically 5400 to 7200 revolutions per minute
(RPM).Storage capacities of hard disks for personal computers range from 10 GB
to 120 GB (one billion bytes are called a gigabyte).

Optical Disks: Optical Mass Storage Devices Store bit values as variations in light
reflection. They have higher area density & longer data life than magnetic storage.
They are also standardized and relatively inexpensive. Their Uses: read-only
storage with low performance requirements, applications with high capacity
requirements & where portability in a standardized format is needed.

€dited with the demo version of
) Infix Aro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Types of Optical Disk
1. CD-ROM (read only)
2. CD-R: (record) to a CD

3. CD-RW: can write and erase CD to reuse it (re-writable)
4. DVD(Digital Video Disk)

2. Explain I/0 devices and their Interfacing
Ans. Input / Output (1/0)
MPU communicates with outside word through 1/0O device.

There are 2 different methods by which MPU identifies and communicates With 1/0
devices these methods are:

1- Direct I/O (Peripheral)
2- Memory-Mapped I/0
The methods differ in terms of the
No. of address lines used in identifying an 1/O device.
Type of control lines used to enable the device.
Instructions used for data transfer.

Direct I/O (Peripheral):-
This method uses two instructions (IN & OUT) for data transfer.

MPU uses 8 address lines to send the address of 1/O device (can identify 256 input
devices & 256 output devices).

The (I/P & O/P devices) can be differentiated by control signals I/O Read (IOR) and I/O
Write (IOW).

The steps in communicating with an 1/O device are similar to those in communicating
with memory and can be summarized as follows:
1- The MPU places an 8-bit device address on address bus then decoded.

2- The MPU sends a control signal (IOR or IOW) to enable the 1/0O device.
3- Data are placed on the data bus for transfer.

Memory Mapped 1/0:-
The MPU uses 16 address lines to identify an I/O device.
This is similar to communicating with a memory location.
Use the same control signals (MEMR or MEMW) and instructions as those of memory.
The MPU views these 1/0 devices as if they were memory locations.
There are no special I/O instructions.
It can identify 64k address shared between memory & |/0 devices.

€dited with the demo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

1. Write down main features of 8085 microprocessor.

It is an 8 bit microprocessor.

It is manufactured with N-MOS technology.

It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB) memory locations
through A0-A15

The first 8 lines of address bus and 8 lines of data bus are multiplexed ADO — AD7

Data bus is a group of 8 lines DO — D7

It supports external interrupt request. .

A 16 bit program counters (PC)
A 16 bit stack pointer (SP)

Six 8-bit general purpose register arranged in pairs: BC, DE, HL.
It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

It is enclosed with 40 pins DIP (Dual in line package).

2. Explain 8085 microprocessor architecture.

I'\"I‘R]‘ i RST 7.5
g }RSIS'Sl el

RST 6.5

TRAP

SID
x

SOD

$

| Interrupt Control

I | Serial VO Control |

8-Bi{ Internal Data Blis 45

g T {3 T
Accumulator (8) || Temp. Reg. (8) Instruction Multiplexer
Reg. (8) =
. W (8)
~F“Iag‘(h) 3 Temp. Reg. | Temp. Reg.
Flip-Flops (1 H{ [Instruction
! Decoder
| - and
) Ant’hm;eti‘c - Machine =
LoglcT[-mt Cycle % Register
D (ALv) 8) Esicodtis 3 Array
Y4
]
®| stack Pointer (16)
Powe;{ 5V Program Counter (16)
Supply GND L Increment/Decrement
Address Latch (16) B
X, CLK i Timing and Control Reset HL JL
X, GEN_Control Status DMA 1 N

!

)

RD

CLK
ouT WR
READY

[T11T

ALE S, S;1I0/M| HLDA

-~

RESET OUT

HOLD RESET IN

Address Buffer

Data/Address Buffer

(8) (8)
As-Ag A, -A
Address Address/Data

Bus Bus

Figure: 8085 microprocessor architecture.

€dited with the demo version of

L @ _ lofix Pro PDF €ditor

z To remove this notice, visit:

wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9> Darshan |

Institute of Engineering & Technology

The architecture of microprocessor 8085 can be divided into seven parts as follows:

Register Unit:

General Purpose Data Register
8085 has six general purpose data registers to store 8-bit data.
These registers are named as B, C, D, E, H and L as shown in fig. 1.
The user can use these registers to store or copy a data temporarily during the execution of a program
by using data transfer instructions.
These registers are of 8 bits but whenever the microprocessor has to handle 16-bit data, these registers
can be combined as register pairs — BC, DE and HL.
There are two internal registers — W and X. These registers are only for internal operation like execution
of CALL and XCHG instructions and not available to the user.

Program Counter (PC)
16-bit register deals with sequencing the execution of instructions.
This register is a memory pointer.
Memory locations have 16-bit addresses which are why this is a 16-bit register.
The microprocessor uses this register to sequence the execution of the instructions.
The function of the program counter is to point to the memory address from which the next byte is to be
fetched.
When a byte (machine code) is being fetched, the program counter is incremented by one to point to
the next memory location.

Stack Pointer (SP)
SP is also a 16-bit register used as a memory pointer.
It points to a memory location in R/W memory, called the stack.
The beginning of the stack is defined by loading 16-bit address in the stack pointer.

MUX/DEMUX unit
This unit is used to select a register out of all the available registers.
This unit behaves as a MUX when data is going from the register to the internal data bus.
It behaves as a DEMUX when data is coming to a register from the internal data bus of the
microprocessor.
The register select will behave as the function selection lines of the MUX/DEMUX.

Address Buffer Register & Data/Address Buffer Register
These registers hold the address/data, received from PC/internal data bus and then load the external
address and data buses.
These registers actually behave as the buffer stage between the microprocessor and external system
buses.

€dited with the demo version of
L @ Infix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

Control Unit:
The control unit generates signals within microprocessor to carry out the instruction, which has been
decoded.
In reality it causes connections between blocks of the microprocessor to be opened or closed, so that
the data goes where it is required and the ALU operations occur.
The control unit itself consists of three parts; the instruction registers (IR), instruction decoder and
machine cycle encoder and timing and control unit.

Instruction Register
This register holds the machine code of the instruction.
When microprocessor executes a program it reads the opcode from the memory, this opcode is stored in
the instruction register.

Instruction Decoder & Machine Cycle Encoder
The IR sends the machine code to this unit.
This unit, as its name suggests, decodes the opcode and finds out what is to be done in response of the
coming opcode and how many machine cycles are required to execute this instruction.

Timing & Control unit
The control unit generates signals within microprocessor to carry out the instruction, which has been
decoded.
In reality, it causes certain connections between blocks of the microprocessor to be opened or closed, so
that the data goes where it is required and the ALU operations occur.

Arithmetic & Logical Unit:
The ALU performs the actual numerical and logical operation such as ‘add’, ‘subtract’, ‘AND’, ‘OR’, etc.
ALU uses data from memory and from accumulator to perform the arithmetic operations and always
stores the result of the operation in accumulator.
ALU consists of accumulator, flag register and temporary register.

Accumulator
The accumulator is an 8-bit register that is a part of ALU.
This register is used to store 8-bit data and perform arithmetical and logical operations.
The result of an operation is stored in the accumulator.
It is also identified as register A.

Flags register
Flag register includes five flip-flops, which are set or reset after an operation according to the data
conditions of the result in the accumulator and other registers.
They are called zero (Z), carry (CY), sign (S), parity (P) and auxiliary carry (AC) flags; their bit positions in
the flag register are shown in fig.
The microprocessor uses these flags to set and test data conditions.

Interrupt Control
The interrupt control unit has 5 interrupt inputs TRAP,RST 7.5, RST 6.5, RST 5.5 & INTR and one
acknowledge signal INTA.

€dited with the demo version of
L @ Infix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9> Darshan

Institute of Engineering & Technology

It controls the interrupt activity of 8085 microprocessor.

Serial 10 control
8085 serial 10 control provides two lines, SOD and SID for serial communication.
The serial output data (SOD) line is used to send data serially and serial input data line (SID) is used to
receive data serially.

3. Explain Flags Registers in 8085

Flag register includes five flip-flops, which are set or reset after an operation according to the data
conditions of the result in the accumulator and other registers.

They are called zero (Z), carry (CY), sign (S), parity (P) and auxiliary carry (AC) flags; their bit positions in
the flag register are shown in fig.

The microprocessor uses these flags to set and test data conditions.

S Z AC P cy

Figure: Flags registers in 8085.

The flags are stored in the 8-bit register so that the programmer can examine these flags by accessing
the register through an instruction.

These flags have critical importance in the decision-making process of the microprocessor.

The conditions (set or reset) of the flags are tested through the software instructions.

For instance, JC (jump on carry) is implemented to change the sequence of a program when CY flag is
set.

Z (Zero) Flag:
This flag indicates whether the result of mathematical or logical operation is zero or not.
If the result of the current operation is zero, then this flag will be set, otherwise reset.

CY (Carry) Flag:
This flag indicates, whether, during an addition or subtraction operation, carry or borrow is generated or
not, if generated then this flag bit will be set.

AC (Auxiliary Carry) Flag:
It shows carry propagation from D3 position to D4 position.

A

< N

PLEoE ILe i2,5 FEy 13,3

€dited with the demo version of

L @ Infix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

Figure: Auxiliary Carry.

As shown in the fig., a carry is generated from D3 bit position and propagates to the D4 position. This
carry is called auxiliary carry.

S (Sign) Flag:
Sign flag indicates whether the result of a mathematical operation is negative or positive.
If the result is positive, then this flag will reset and if the result is negative this flag will be set.
This bit, in fact, is a replica of the D7 bit.

P (Parity) Flag:

- Parity is the number of 1's in a number.
If the number of 1’s in a number is even then that number is known as even parity number.
If the number of 1’s in a number is odd then that number is known as an odd parity number.
This flag indicates whether the current result is of even parity (set) or of odd parity (reset).

€dited with the demo version of

L @ _ InfixPro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

4. Explain 8085 pin diagram.

X, 1 40 v,
X, []2 39 |_JHOLD
RESET ouT[] 3 38 [_JHLDA
sob[] 4 37 [JCLK (OUT)
sib s 36 | RESET IN
TRAP[] ¢ 35 | READY
RST7.5[] 7 34 [J1o/m
RST6.5] 8 33 |1S,
rRsT 5.5 9 32 [RD
INTR (] 10 31 [Jwr
INTA C 14 aiEA 30 JALE
AD,[] 12 29 |15,
AD,[] 13 28 A
AD,[] 14 27 Ha,
AD;[] 15 26 A
AD,[] 16 25 1A
ADs 117 24] A
AD;[] 18 23 [1Ay,
ap,[] 19 22 1A,
V,, 120 21 A

Figure: 8085 pin diagram.

All signals can be classified into six groups:
Address Bus

Data Bus

Control & Status Signals

Power Supply & Frequency signals
Externally initiated signals

Serial I/O Ports

o Uk wN R

€dited with the demo version of

@ _ Infix Pro PDF €ditor

wwuw.iceni.com/unlock.htm

z TL remove this notice, visit:

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9> Darshan

Institute of Engineering & Technology

1) Address Bus (pin 12 to 28)
16 signal lines are used as address bus.
However these lines are split into two segments: Ais- Asand AD7- ADo
Ais- Agare unidirectional and are used to carry high-order address of 16-bit address.
AD;- ADg are used for dual purpose.

2) Data Bus/ Multiplexed Address (pin 12 to 19)
Signal lines AD7-ADO are bidirectional and serve dual purpose.
They are used as low-order address bus as well as data bus.
The low order address bus can be separate from these signals by using a latch.

3) Control & Status Signals
To identify nature of operation
Two Control Signals
1) RD’ (Read-pin 32)

v" Thisis a read control signal (active low)
v’ This signal indicates that the selected I/0 or Memory device is to be read & data are available on
data bus.
2) WR’ (Write-pin 31)
v This is a write control signal (active low)
v This signal indicates that the selected 1/0 or Memory device is to be write.
Three Status Signals
1) Si(pin33)
2) So(pin 29)
v"S; and So status signals can identify various operations, but they are rarely used in small systems.

S1 | So | Mode

HLT

WRITE

READ

OPCODE FETCH

R RO|O
= O(R|O

3) 10/M’ (pin 34)
v" This is a status signal used to differentiate 1/0 and memory operation
v" When it is high, it indicates an I/O operation
v When it is low, it indicates a memory operation
v This signal is combined with RD’ and WR’ to generate /0 & memory control signals
To indicate beginning of operation
0 One Special Signal called ALE (Address Latch Enable-Pin 30)
0 Thisis positive going pulse generated every time the 8085 begins an operation (machine cycle)
0 ltindicates that the bits on AD7-ADO are address bits
0 This signal is used primarily to latch the low-address from multiplexed bus & generate a separate set
of address lines A7-AQ.

€dited with the demo version of

L @ Infix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

4) Power Supply & Frequency Signal
V® Pin no. 40, +5V Supply
Vs ® Pin no.20, Ground Reference
X1, X2 ® Pin no.1 & 2, Crystal Oscillator is connected at these two pins. The frequency is internally
divided by two;
0 Therefore, to operate a system at 3MHz, the crystal should have a frequency of 6MHz.
CLK (OUT) ® Clock output. Pin No.37: This signal can be used as the system clock for other devices.

5) Externally Initiated Signals including Interrupts
INTR (Input) ® Interrupt Request. It is used as general purpose interrupt
INTA’ (Output) ® Interrupt Acknowledge. It is used to acknowledge an interrupt.
RST7.5, RST6.5, RST5.5 (Input) ® Restart Interrupts.
0 These are vector interrupts that transfer the program control to specific memory locations.
0 They have higher priorities than INTR interrupt.
0 Among these 3 interrupts, the priority order is RST7.5, RST6.5, RST5.5
TRAP (Input) ® This is a non maskable interrupt & has the highest priority.
HOLD (Input) ® This signal indicates that a peripheral such as DMA Controller is requesting the use of
address & data buses
HLDA (Output) ® Hold Acknowledge. This signal acknowledges the HOLD request
READY (Input) ® This signal is used to delay the microprocessor read or write cycles until as low-
responding peripheral is ready to send or accept data. When the signal goes low, the microprocessor
waits for an integral no. of clock cycles until it goes high.
RESET IN’ (Input) ® When the signal on this pin goes low, the Program Counter is set to zero, the buses
are tri-stated & microprocessor is reset.
RESET OUT (Output) ® This signal indicates that microprocessor is being reset. The signal can be used to
reset other devices.

6) Serial I/0 Ports
Two pins for serial transmission
1) SID (Serial Input Data-pin 5)
2) SOD (Serial Output Data-pin 4)
In serial transmission, data bits are sent over a single line, one bit at a time.

€dited with the demo version of
L @ Infix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

5. Explain Instruction Cycle

Instruction Cycle is defined as time required to complete execution of an instruction.
8085 instruction cycle consists of 1 to 6 Machine Cycles or 1 to 6 operations.

« Instruction Cycle ’
«— Fetch Cycle Execute Cycle —

T3 T,

N/

Figure: Instruction Cycle.

CLK

6. Explain Machine Cycle

Machine Cycle is defined as time required by the microprocessor to complete operation of accessing
memory device or |/O device.

This cycle may consist 3 to 6 T-states.

The basic microprocessor operation such as reading a byte from 1/O port or writing a byte to memory is

called as machine cycle.

Memory __
Read

Tl y T2 T3 : T4 i

'e—— Machine —— | Machine —,
Cycle-1 Cycle-2

le— Opcode Fetch ——je—

Figure: Machine Cycle.

7. Explain T-States

T-States are defined as one subdivision of operation performed in one clock period.
These sub divisions are internal states synchronized with system clock & each T-state is precisely equal

to one clock period.

€dited with the demo version of

L @ _ InfixPro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

T T, T3 Ta

wl_/ NN\

e T-Statel -»je T-State2 —-»je T-State3 =

Figure: T-States.

8. Compare Instruction Cycle, Machine Cycle and T-States

— Opcode Fetch ——fe— Memory
Read

a L/—\IL/__/_ |

le—— Machine ———le_ Machine
Cycle-1 Cycle-2

‘ Instruction Cycle
«— Fetch Cycle ——f«— Execute Cycle —|

le= T-Statel T-State2 =we= T-State3 =»[e T-Stated =»

Figure: Comparison between Instruction Cycle, Machine Cycle and T-States.

Instruction Cycle: Time required to complete execution of an instruction.
Machine Cycle: Time required by the microprocessor to complete an operation.
T-States: One subdivision of operation performed in one clock period.

€dited with the demo version of

@ _ Infix Pro PDF €ditor

wwuw.iceni.com/unlock.htm

z TL remove this notice, visit:

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9> Darshan

Institute of Engineering & Technology

9. Explain 8085 Programming Model

Accumulator A (8) F:Iag R%egist%r
B (8) C(8)
D (8) E(8)
H (8) L(8)

Stack Pointer (SP) (16)

Program Counter (PC) (16)

Data Bus Address Bus
16
Lines
Bidirectional Unidirectional

Figure: 8085 Programming Model.

Registers
6 general purpose registers to store 8-bit data B, C, D, E,H & L.

Can be combined as register pairs — BC, DE, and HL to perform 16-bit operations.

Used to store or copy data using data copy instructions.

Accumulator
8 - bit register, identified as A
Part of ALU

Used to store 8-bit data to perform arithmetic & logical operations.

Result of operation is stored in it.

Flag Register

ALU has 5 Flag Register that set/reset after an operation according to data conditions of the result in

accumulator & other registers.

Helpful in decision making process of Microprocessor
Conditions are tested through software instructions
Fore.g.

JC (Jump on Carry) is implemented to change the sequence of program when CY is set.

Program Counter
16-bit registers used to hold memory addresses.
Size is 16-bits because memory addresses are of 16-bits.

€dited with the demo version of

L @ _ lofix Pro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9> Darshan

Institute of Engineering & Technology

Microprocessor uses PC register to sequence the execution of instructions.
Its function is to point to memory address from which next byte is to be fetched.
When a byte is being fetched, PC is incremented by 1 to point to next memory location.

Stack Pointer
Used as memory pointer
Points to the memory location in R/W memory, called Stack.
Beginning of stack is defined by loading a 16-bit address in the stack pointer.

10. Explain Bus Organization of 8085

AlS
AO

Address Bus

T

Memory Input v
8085 MPU Output Real
/\ \ ‘ /\ World

D, | | [l
— Data Bus
DO

—> Control Bus

Figure: Bus Organization of 8085.

Address Bus
Group of 16 lines generally identified as AO to A15.
It is unidirectional i.e. bits flow from microprocessor to peripheral devices.
16 address lines are capable of addressing 65536 memory locations.
So, 8085 has 64K memory locations.

Data Bus
Group of 8 lines identified as DO to D7.
They are bidirectional i.e. data flow in both directions between microprocessor, memory & peripheral.
8 data lines enable microprocessor to manipulate data ranging from 00H to FFH (28=256 numbers).
Largest number appear on data bus is 1111 1111 => (255)10.
As Data bus is of 8-bit, 8085 is known as 8-bit Microprocessor.

Control Bus

It comprises of various single lines that carry synchronization, timing & control signals.

€dited with the demo version of

L @ _ Infix Pro PDF Editor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

These signals are used to identify a device type with which MPU intends to communicate.

11. Explain Demultiplexing AD0-AD7

Al 2 A,
1 Ag
0 AlB
O AlZ
0 All
0 AlO
A 0 Ao
8085 2 G Ag
Microprocessor Enable E
AD AD, —e—| D Q—q:>_—0A
A AD, —¢ 0 o’
AD. 4 05H N QA
AD, ¢ — 0 A,
= ‘ﬁgi 7415373 _10 ﬁz
—¢—{ AD; —| 1A
AD, |- AD, OCl_ 11 A,
L

1D,

0 Ds

0 s

1 Da

1p,

=D,

Dl

1p

Figure: Demultiplexing ADO-AD7.

High-Order
Address Bus

ALE=1
Address Bus

Low-Order
Address Bus

ALE=0
Data Bus

Data Bus

The higher-order bus remains on the bus for three clock periods. However, the low-order address is lost

after the first clock period.

This address need to be latched and used for identifying the memory address. If the bus AD7-ADOQ is used
to identify the memory location (2005H), the address will change to 204FH after the first clock period.

Figure shows a schematic that uses a latch and the ALE signal to demultiplex the bus.

The bus AD7-ADOQ is connected as the input to the

latch.

The ALE signal is connected to the Enable pin of the latch, and the output control signal of the latch is

grounded.

Figure shows that the ALE goes high during T1. And during T1 address of lower-order address bus is store

into the latch.

€dited with the demo version of

@ _ Infix Pro PDF €ditor

z TL remove this notice, visit:

wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

12. Explain Memory Interfacing

When we are executing any instruction, we need the microprocessor to access the memory for reading
instruction codes and the data stored in the memory.
For this, both the memory and the microprocessor requires some signals to read/write to/from registers.
The interfacing circuit therefore should be designed in such a way that it matches the memory signal
requirements with the signals of the microprocessor.

Memory Read Cycle

CLK

AS - A15

T
High-Order
>< (PC)y >< Address
Low-Order
AD,- AD, (PC), - Datg = Jrrereomeeee-- Address

ALE

10/M
S: | So Mode Sor S1 10/N1=0, S,=0, S;=1
0 : e RD Read from
O 1 WRITE " \ Memory
110 READ
1| 1 | OPCODE
FETCH

Figure: Memory Read Cycle.

It is used to fetch one byte from the memory.

It requires 3 T-States.

It can be used to fetch operand or data from the memory.

During T1, A8-A15 contains higher byte of address. At the same time ALE is high. Therefore Lower byte
of address A0-A7 is selected from ADO-AD7.

Since it is memory ready operation, I0/M (bar) goes low.

During T2 ALE goes low, RD (bar) goes low. Address is removed from ADO-AD7 and data DO-D7 appears
on ADO-AD7.

During T3, Data remains on ADO-AD?7 till RD (bar) is at low signal.

€dited with the demo version of

@ _ Infix Pro PDF €ditor

z TL remove this notice, visit:

wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

S Darshan

Institute of Engineering & Technology

Memory Write Cycle

CLK

AB' AlS

ALE

B Data
Do-D;

W
X
AD,-AD, | X (PC), >
I
iy
X

10/M .
S; | So | Mode Sor S1{
ol o] HT _
of1]| wrte | WR
1| 0| READ
1| 1 | opcopE
FETCH

Figure: Memory Write Cycle.

It is used to send one byte into memory.
It requires 3 T-States.

During T1, ALE is high and contains lower address A0-A7 from ADO-AD7.

A8-A15 contains higher byte of address.

As it is memory operation, I0/M (bar) goes low.
During T2, ALE goes low, WR (bar) goes low and Address is removed from ADO-AD7 and then data

appears on ADO-AD7.
Data remains on ADO-AD7 till WR (bar) is low.

High-Order
Address

Low-Order
Address

Write
Memory

€dited with the demo version of

@ _ Infix Pro PDF €ditor

z TL remove this notice, visit:

wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

13. Explain how Control Signals Generated in 8085
Operation 10/ M’ RD’ WR’
MEMR’ 0 0 X
MEMW’ 0 X 0
IOR’ 1 0 X
oW’ 1 X 0
8085 0 741S32
‘M d S
10/Mm o——MEMR
Y <
RD 0
e
WR 0 4 MEMW
1
—{>0—d P

0}1R

0 IOW

Figure: Control Signals Generated in 8085.

Figure shows that four different control signals are generated by combining the signals RD (bar), WR
(bar), and 10/M (bar).

The signal 10/M (bar) goes low for the memory operation. This signal is ANDed with RD (bar) and WR
(bar) signals b using the 74LS32 quadruple two-input OR gates, as shown in figure 4.5.

The OR gates are functionally connected as negative NAND gates. When both input signals go low, the
output of the gates go low and generate MEMR (bar) and MEMW (bar) control signals.

When the 10/M (bar) signal goes high, it indicates the peripheral I/O operation.

Figure shows that this signal is complemented using the Hex inverter 74LS04 and ANDed with the RD
(bar) and WR (bar) signals to generate IOR (bar) and IOW (bar) control signals.

€dited with the demo version of

L @ _ InfixPro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

@ Darshan

Institute of Engineering & Technology

1. 8085 instruction set.

Sr.
DATA TRANSFER INSTRUCTIONS

1.

Instruction

MOV Ry, Rs
MOV M, Rs
MOV Rs, M

MVI Rd, data
MVI M, data

LDA 16-bit address

LDAX B/D Reg. pair

LXI Reg.-pair, 16-bit data

LHLD 16-bit address

STA 16-bit address

STAX Reg. pair

Description

This instruction copies the contents of the source
register into the destination register; the contents of
the source register are not altered. If one of the
operands is a memory location, its location is
specified by the contents of the HL registers.

The 8-bit data is stored in the destination register or
memory. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

The contents of a memory location, specified by a 16-
bit address in the operand, are copied to the
accumulator. The contents of the source are not
altered.

The contents of the designated register pair point to
a memory location. This instruction copies the
contents of that memory location into the
accumulator. The contents of either the register pair
or the memory location are not altered.

The instruction loads 16-bit data in the register pair
designated in the operand.

The instruction copies the contents of the memory
location pointed out by the 16-bit address into
register L and copies the contents of the next memory
location into register H. The contents of source
memory locations are not altered.

The contents of the accumulator are copied into the
memory location specified by the operand. This is a
3-byte instruction, the second byte specifies the low-
order address and the third byte specifies the high-
order address.

The contents of the accumulator are copied into the
memory location specified by the contents of the
operand (register pair). The contents of the
accumulator are not altered.

1

Example

MOV B, C
MOV B, M

MVI B, 57H

MVI M, 57H

LDA 2034H

LDAX B

LXI H, 2034H
LXI H, XYZ

LHLD 2040H

STA 4350H

STAX B

€dited with the demo version of

@ Infix Pro PDF €Editor

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Darshan

Institute of Engineering & Technology

Sr.

10.

11.

12.

13.

14.

15.

16.

Instruction

SHLD 16-bit address

XCHG

SPHL

XTHL

PUSH Reg. pair

POP Reg. pair

OUT 8-bit port address

IN 8-bit port address

ARITHMETIC INSTRUCTIONS

Description

The contents of register L are stored into the memory
location specified by the 16-bit address in the
operand and the contents of H register are stored
into the next memory location by incrementing the
operand. The contents of registers HL are not altered.
This is a 3-byte instruction, the second byte specifies
the low-order address and the third byte specifies the
high-order address.

The contents of register H are exchanged with the
contents of register D, and the contents of register L
are exchanged with the contents of register E.

The instruction loads the contents of the H and L
registers into the stack pointer register, the contents
of the H register provide the high-order address and
the contents of the L register provide the low-order
address. The contents of the H and L registers are not
altered.

The contents of the L register are exchanged with the
stack location pointed out by the contents of the
stack pointer register. The contents of the H register
are exchanged with the next stack location (SP+1);
however, the contents of the stack pointer register
are not altered.

The contents of the register pair designated in the
operand are copied onto the stack in the following
sequence. The stack pointer register is decremented
and the contents of the high order register (B, D, H,
A) are copied into that location. The stack pointer
register is decremented again and the contents of the
low-order register (C, E, L, flags) are copied to that
location.

The contents of the memory location pointed out by
the stack pointer register are copied to the low-order
register (C, E, L, status flags) of the operand. The stack
pointer is incremented by 1 and the contents of that
memory location are copied to the high-order
register (B, D, H, A) of the operand. The stack pointer
register is again incremented by 1.

The contents of the accumulator are copied into the
I/0 port specified by the operand.

The contents of the input port designated in the
operand are read and loaded into the accumulator.

1

Example

SHLD 2470H

XCHG

SPHL

XTHL

PUSH B
PUSH A

POP H
POP A

OUT F8H

IN 8CH

€dited with the demo version of

@ Infix Pro PDF €Editor

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Darshan

Institute of Engineering & Technology

Sr.
17.

18.

19.

20.

21.

22.

23.

Instruction

ADDR
ADD M

ADCR
ADCM

ADI 8-bit data

ACI 8-bit data

DAD Reg. pair

SUBR
SUB M

SBB R
SBB M

Description

The contents of the operand (register or memory) are
added to the contents of the accumulator and the
result is stored in the accumulator. If the operand is a
memory location, its location is specified by the
contents of the HL registers. All flags are modified to
reflect the result of the
addition.

The contents of the operand (register or memory)
and the Carry flag are added to the contents of the
accumulator and the result is stored in the
accumulator. If the operand is a memory location, its
location is specified by the contents of the HL
registers. All flags are modified to reflect the result of
the addition.

The 8-bit data (operand) is added to the contents of
the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the
result of the addition.

The 8-bit data (operand) and the Carry flag are added
to the contents of the accumulator and the result is
stored in the accumulator. All flags are modified to
reflect the result of the addition.

The 16-bit contents of the specified register pair are
added to the contents of the HL register and the sum
is stored in the HL register. The contents of the source
register pair are not altered. If the result is larger than
16 bits, the CY flag is set. No other flags are affected.

The contents of the operand (register or memory) are
subtracted from the contents of the accumulator, and
the result is stored in the accumulator. If the operand
is a memory location, its location is specified by the
contents of the HL registers. All flags are modified to
reflect the result of the subtraction.

The contents of the operand (register or memory)
and the Borrow flag are subtracted from the contents
of the accumulator and the result is placed in the
accumulator. If the operand is a memory location, its
location is specified by the contents of the HL
registers. All flags are modified to reflect the result of
the subtraction.

1

Example

ADD B
ADD M

ADCB
ADC M

ADI 45H

ACI 45H

DADH

SUB B
SUB M

SBB B
SBB M

€dited with the demo version of

@ Infix Pro PDF €Editor

To remoVe this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

@ Darshan

Institute of Engineering & Technology

Sr.

24.

25.

26.

27.

28.

29.

30.

Instruction

SUI 8-bit data

SBI 8-bit data

INRR
INR M

INXR

DCRR
DCRM

DCXR

DAA

Description

The 8-bit data (operand) is subtracted from the
contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect
the result of the subtraction.

The 8-bit data (operand) and the Borrow flag are
subtracted from the contents of the accumulator and
the result is stored in the accumulator. All flags are
modified to reflect the result of the subtraction.

The contents of the designated register or memory
are incremented by 1 and the result is stored in the
same place. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

The contents of the designated register pair are
incremented by 1 and the result is stored in the same
place.

The contents of the designated register or memory
are decremented by 1 and the result is stored in the
same place. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

The contents of the designated register pair are
decremented by 1 and the result is stored in the same
place.

The contents of the accumulator are changed from a
binary value to two 4-bit binary coded decimal (BCD)
digits. This is the only instruction that uses the
auxiliary flag to perform the binary to BCD
conversion, and the conversion procedure is
described below. S, Z, AC, P, CY flags are altered to
reflect the results of the operation.

If the value of the low-order 4-bits in the accumulator
is greater than 9 or if AC flag is set, the instruction
adds 6 to the low-order four bits.

If the value of the high-order 4-bits in the
accumulator is greater than 9 or if the Carry flag is set,
the instruction adds 6 to the high-order four bits.

Example

SUI'45H

SBI 45H

INR B
INR M

INXH

DCRB

DCR M

DCXH

DAA

€dited with the demo version of

@ Infix Pro PDF €Editor

1

To r enove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

Sr. Instruction Description Example

BRANCHING INSTRUCTIONS

31. JMP 16-bit address The program sequence is transferred to the memory JMP 2034H
location specified by the 16-bit address given in the JMP XYZ
operand.

Jump conditionally The program sequence is transferred to the memory location specified

by the 16-bit address given in the operand based on the specified flag
of the PSW as described below.

32. JC 16-bit address Jump on Carry, Flag Status: CY=1 JC 2050H
33. JNC 16-bit address Jump on no Carry, Flag Status: CY=0 JNC 2050H
34. JP 16-bit address Jump on positive, Flag Status: S=0 JP 2050H
35. JM 16-bit address Jump on minus, Flag Status: S=1 JM 2050H
36. JZ 16-bit address Jump on zero, Flag Status: Z=1 JZ 2050H
37. JNZ 16-bit address Jump on no zero, Flag Status: Z=0 JNZ 2050H
38. JPE 16-bit address Jump on parity even, Flag Status: P=1 JPE 2050H
39. JPO 16-bit address Jump on parity odd, Flag Status: P=0 JPO 2050H
40. CALL 16-bit address The program sequence is transferred to the memory CALL 2034H

location specified by the 16-bit address given in the CALL XYZ
operand. Before the transfer, the address of the next

instruction after CALL (the contents of the program

counter) is pushed onto the stack.

Call conditionally The program sequence is transferred to the memory location specified
by the 16-bit address given in the operand based on the specified flag
of the PSW as described below. Before the transfer, the address of the
next instruction after the call (the contents of the program counter) is
pushed onto the stack.

41. CC 16-bit address Call on Carry, Flag Status: CY=1 CC 2050H
42. CNC 16-bit address Call on no Carry, Flag Status: CY=0 CNC 2050H
43. CP 16-bit address Call on positive, Flag Status: S=0 CP 2050H
44. CM 16-bit address Call on minus, Flag Status: S=1 CM 2050H
45, CZ 16-bit address Call on zero, Flag Status: Z=1 CZ 2050H
46. CNZ 16-bit address Call on no zero, Flag Status: Z=0 CNZ 2050H
47. CPE 16-bit address Call on parity even, Flag Status: P=1 CPE 2050H
48. CPO 16-bit address Call on parity odd, Flag Status: P=0 CPO 2050H

€dited with the demo version of
@ Infix Pro PDF €Editor

To remoVe this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Darshan

Institute of Engineering & Technology

Sr. Instruction
49. RET
Return from

conditionally

50.
51.
52.
53.
54,
55.
56.
57.

58.

59.

RC
RNC
RP
RM
RZ
RNZ
RPE
RPO

PCHL

RST 0-7

subroutine

Description

The program sequence is transferred from the
subroutine to the calling program. The two bytes
from the top of the stack are copied into the program
counter, and program execution begins at the new
address.

Example

RET

The program sequence is transferred from the subroutine to the calling
program based on the specified flag of the PSW as described below.
The two bytes from the top of the stack are copied into the program
counter, and program execution begins at the new address.

Return on Carry, Flag Status: CY=1
Return on no Carry, Flag Status: CY=0
Return on positive, Flag Status: S=0
Return on minus, Flag Status: S=1
Return on zero, Flag Status: Z=1
Return on no zero, Flag Status: Z=0
Return on parity even, Flag Status: P=1
Return on parity odd, Flag Status: P=0

The contents of registers H and L are copied into the
program counter. The contents of H are placed as the
high-order byte and the contents of L as the low-
order byte.

The RST instruction is equivalent to a 1-byte call
instruction to one of eight memory locations
depending upon the number. The instructions are
generally used in conjunction with interrupts and
inserted using external hardware. However
these can be used as software instructions in a
program to transfer program execution to one of the
eight locations. The addresses are:

Instruction Restart Address
RSTO 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

RC
RNC
RP
RM
RZ
RNZ
RPE
RPO

PCHL

RST 3

€dited with the demo version of

L @ Infix Pro PDF €ditor

1

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

@ Darshan

Institute of Engineering & Technology

Sr. Instruction Description Example

The 8085 has four additional interrupts and these interrupts generate RST instructions internally and
thus do not require any external hardware.

60. TRAP It restart from address 0024H TRAP

61. RST5.5 It restart from address 002CH RST 5.5

62. RST6.5 It restart from address 0034H RST 6.5

63. RST7.5 It restart from address 003CH RST 7.5

LOGICAL INSTRUCTIONS

64. CMPR The contents of the operand (register or memory)are CMP B
CMP M compared with the contents of the accumulator. Both CMP M

contents are preserved. The result of the comparison
is shown by setting the flags of the PSW as follows:
if (A) < (reg/mem): carry flag is set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset

65. CPI 8-bit data The second byte (8-bit data) is compared with the CPI 89H
contents of the accumulator. The values being
compared remain unchanged. The result of the
comparison is shown by setting the flags of the PSW
as follows:
if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) > data: carry and zero flags are reset

66. ANAR The contents of the accumulator are logically ANDed ANAB

ANAM with the contents of the operand (register or ANAM

memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY is
reset. AC is set.

67. ANI 8-bit data The contents of the accumulator are logically ANDed ANI 86H
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY is reset. AC is set.

68. XRAR The contents of the accumulator are Exclusive ORed XRA B
XRAM with the contents of the operand (register or XRA M
memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY and
AC are reset.

€dited with the demo version of
@ Infix Pro PDF €Editor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

@ Darshan

Institute of Engineering & Technology

Sr. Instruction
69. XRI 8-bit data
70. ORAR

ORA M
71. ORI 8-bit data
72. RLC
73. RRC
74. RAL
75. RAR
76. CMA
77. CMC
78. STC
CONTROL INSTRUCTIONS
79. NOP

Description

The contents of the accumulator are Exclusive ORed
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY and AC are reset.

The contents of the accumulator are logically ORed
with the contents of the operand (register or
memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY and
AC are reset.

The contents of the accumulator are logically ORed
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY and AC are reset.

Each binary bit of the accumulator is rotated left by
one position. Bit D7 is placed in the position of DO as
well as in the Carry flag. CY is modified according to
bit D7.S, Z, P, AC are not affected.

Each binary bit of the accumulator is rotated right by
one position. Bit DO is placed in the position of D7 as
well as in the Carry flag. CY is modified according to
bit DO. S, Z, P, AC are not affected.

Each binary bit of the accumulator is rotated left by
one position through the Carry flag. Bit D7 is placed
in the Carry flag, and the Carry flag is placed in the
least significant position DO. CY is modified according
to bit D7.S, Z, P, AC are not affected.

Each binary bit of the accumulator is rotated right by
one position through the Carry flag. Bit DO is placed
in the Carry flag, and the Carry flag is placed in the
most significant position D7. CY is modified according
to bit DO. S, Z, P, AC are not affected.

The contents of the accumulator are complemented.
No flags are affected.

The Carry flag is complemented. No other flags are
affected.

The Carry flag is set to 1. No other flags are affected.

No operation is performed. The instruction is fetched
and decoded. However no operation is executed.

1

Example

XRI 86H

ORAB
ORA M

ORI 86H

RLC

RRC

RAL

RAR

CMA

cMC

STC

NOP

€dited with the demo version of

@ Infix Pro PDF €Editor

To r enove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

5 Darshan

Institute of Engineering & Technology

Sr.
80.

81.

82.

83.

84.

Instruction

HLT

DI

El

RIM

SIM

Description

The CPU finishes executing the current instruction
and halts any further execution. An interrupt or reset
is necessary to exit from the halt state.

The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled. No flags are
affected.

The interrupt enable flip-flop is set and all interrupts
are enabled. No flags are affected. After a system
reset or the acknowledgement of an interrupt, the
interrupt enable flip-flop is reset, thus disabling the
interrupts. This instruction is necessary to re enable
the interrupts (except TRAP).

This is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit. The instruction loads eight bits in the
accumulator with the following interpretations.

D7 De D4 D3 D2 D1 I:)0

SID 17 16 15 IE | 75 | 65] 55

Ser\;‘ In;l)ut v | X |4‘v|

i InteSeri
Data bit Interrupts al Interrupt

pending If Nuitnnit mas<ed
if bit=1

This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output. The instruction interprets the
accumulator contents as follows.

D D D D D D

5 4 3 2 1 0

SOD

SDE

HoO(R7.5 MSE M7.5 n6.5 MS5.5

/

Serial
Output
Data

Serial Data
enable
1=Enable
0=Disable

| | |
Resetjﬂ-fj \

if Dg=1 Mask Interrupts
if hits=1
Mask set
enableif
D3=1

Example

HLT

DI

El

RIM

SIM

€dited with the demo version of

L @ _ Infix Pro PDF Editor

To removVe this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan |

Institute of Engineering & Technology

2. Explain Addressing mode in 8085

1) Immediate Addressing Mode
In this mode 8/16 bit data is specified in instruction itself as one of its operand.
Example
MVI B 20H ; 20H is copied into register B.
LXI D 1000H ; 1000H is stored into DE register pair.

2) Direct Addressing Mode
In this mode 8/16 bit address is directly specified in instruction itself as one of its operand.
Example
LDA 2000H ; 2000H is memory address.
IN O8H ; 08H is port address.
OUT 10H ; 10H is port address.

3) Register Addressing Mode
In this mode specifies register or register pair that contains data.
Example
MOV AB ;A < B.
ADD B ; A=A+B.

4) Indirect Addressing Mode
In this mode 16 bit memory address is indirectly provided with the instruction using a register pair.
Example
LDAX D ; A € M[DE].
STAX D ; M[DE] € A.

5) Implicit Addressing Mode
This mode doesn’t require any operand, data is specified by the Opcode itself.

Example
CMA

€dited with the demo version of

L @ _ Infix Pro PDF Editor

To r enOve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

1. Write an ALP to load register B with data 14H, register C with FFH, register D

with 29H and register E with 67H.
MVI B, 14H

MVIC, FFH
MVI D, 29H
MVIE, 67H

HLT

2. Write an ALP to transfer data from register B to C.
MVI B, 55H

MOV C, B

HLT

3. Write an ALP to store data of register B into memory location 2050H.
MVI B, 67H

MOV A, B
STA 2050H ; Store data of Accumulator at memory location 2050H

HLT

4. write an ALP which directly store data 56H into memory location 2050H.
LXI H, 2050H

MVI M, 56H

HLT

5. Write an 8085 assembly language program for exchanging two 8-bit numbers

stored in memory locations 2050h and 2051h.
LDA 2050H

MOV B, A
LDA 2051H
STA 2050H
MOV A, B
STA 2051H

HLT

6. Write an ALP to interchange 16-bit data stored in register BC and DE.

WITHOUT XCHG INSTRUCTION
MOV H, B

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

MOV L, C
MOV B, D
MOV C, E
MOV D, H
MOV E, L
HLT

WITH XCHG INSTRUCTION
MOV H, B

MOV L, C

XCHG ; The contents of register H are exchanged with the contents of register D, and the
; contents of register L are exchanged with the contents of register E.

MOV B, H

MOV C, L

HLT

. Write the set of 8085 assembly language instructions to store the contents of B

and C registers on the stack.
MVI B, 50H

MVI C, 60H
PUSH B
PUSH C

HLT

. Write an ALP to delete (Make 00H) the data byte stored at memory location

from address stores in register DE.
MVI A, 00H

STAXD

HLT

. Write an 8085 assembly language program to add two 8-bit numbers stored in

memory locations 2050h and 2051h. Store result in location 2052h.
LXI H 2050H

MOV AM
INX H

ADD M

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

INX H
MOV M A

HLT

10. Subtract 8 bit data stored at memory location 2050H from data stored at

memory location 2051H and store result at 2052H.
LXI H 2050H

MOV AM

INX H

SUBM; A=A-M
INXH

MOV M A

HLT

11. Write an 8085 assembly language program to add two 16-bit numbers

stored in memory.
LHLD 2050H

XCHG ; The contents of register H are exchanged with the contents of register D, and the
; contents of register L are exchanged with the contents of register E.

LHLD 2052H

MOV A E

ADD L

MOV LA

MOV AD

ADCH

MOV HA

SHLD 2054H ; Store Value of L Register at 2054 and value of H register at 2055.

HLT

12. Write an 8085 assembly language program to find the number of 1’'s binary

representation of given 8-bit number.
MVI B 00H

MVI C 08H

MOV AD

€dited with the demo version of

—@ —infixPro-PBf-Editer

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

BACK: RAR ; Rotate Accumulator Right through carry flag.
JNC SKIP

INR B

SKIP: DCR C; Increment of B will skip.

JNZ BACK

HLT

13. Implement the Boolean equation D= (B+C) - E, where B, C, D and E

represents data in various registers of 8085.
MOV A B

ORAC
ANAE
MOV DA

HLT

14. Write an 8085 assembly language program to add two decimal numbers

using DAA instruction.
LXI H 2050H

MOV AM

INX H

MOV B M

MVI C OOH

ADD B

DAA ; Decimal adjustment of accumulator.
JNC SKIP

INR C

SKIP: INX H ; Increment of C will skip.
MOV M A

INXH

MOV M C

HLT

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

15. Write an 8085 assembly language program to find the minimum from two

8-bit numbers.
LDA 2050H

MOV B A

LDA 2051H

CMP B

JNC SMALL

STA 2052H

HLT

SMALL: MOV A B
STA 2052H

HLT

16. Write an 8085 program to copy block of five numbers starting from

location 2001h to locations starting from 3001h.
LXI D 3100H

MVI C 05H

LXI'H 2100
LOOP: MOVA M
STAXD

INX D

INXH

DCRC

JNZ LOOP

HLT

17. An array of ten data bytes is stored on memory locations 2100H onwards.
Write an 8085 assembly language program to find the largest number and

store it on memory location 2200H.
LXI H 2100H

MVI C OAH
MOV AM
DCRC

LOOP: INXH

€dited with the demo version of

—@ —infixPro-PBf-Editer

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

CMP M ; Compare Data of accumulator with the data of memory location specified by HL pair and
; set flags accordingly.

JNC AHED

MOV A M

AHED: DCRC

IJNZ LOOP

STA 2200H

HLT

18. Write an 8085 assembly language program to add block of 8-bit numbers.
LXI H 2000H

LXI B 3000H
LXI D 4000H
BACK: LDAX B
ADD M
STAXD
INXH

INX B

INX D

MOV AL
CPI OA

JNZ BACK

HLT

19. Write an 8085 assembly language program to count the length of string

ended with O0dh starting from location 2050h (Store length in register B).
LXI H 2050H

MVI B O0H
BACK: MOV A M
INR B

INXH

CP1 ODH

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

IJNZ BACK
DCRB

HLT

20. An array of ten numbers is stored from memory location 2000H onwards.
Write an 8085 assembly language program to separate out and store the EVEN

and ODD numbers on new arrays from 2100H and 2200H, respectively.
LXI H 2000H

LXI D 2100H

LXI B 2200H

MVI A OAH
COUNTER: STA 3000H
MOV AM

ANI 01H

JNZ CARRY

MOV AM

STAX B

INX B

JMP JUMP

CARRY: MOV A M ; This block will store Odd numbers.
STAXD

INXD

JUMP: LDA 3000H
DCRA

INX H

JNZ COUNTER

HLT

21. An array of ten data bytes is stored on memory locations 2100H onwards.
Write an 8085 assembly language program to find the bytes having
complemented nibbles (e.g. 2DH, 3CH, 78H etc.) and store them on a new array

starting from memory locations 2200H onwards.
LXI H 2100H

LXI D 2200H

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

MVI C OAH
LOOP: MOVA M
ANI OFH
MOV BA
MOV AM
ANI FOH
RRC

RRC

RRC

RRC

CPM B

JNZ NEXT
MOV AM
STAXD

INX D
NEXT: INX H
DCRC

JNZ LOOP

HLT

22. Write an 8085 assembly language program to count the positive numbers,
negative numbers, zeros, and to find the maximum number from an array of
twenty bytes stored on memory locations 2000H onwards. Store these three
counts and the maximum number on memory locations 3001H to 3004H,

respectively.
LXI H 2000

MVIC 14
MVI D 00
MVI B 00
MVI E 00
LOOP: MOVA M

CMP B

€dited with the demo version of
—@ —infixPro-PBf-Editer

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

Prof. Vijay M. Shekhat, CE Department | 2150707 — Microprocessor and Interfacing

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

JCNEG
IJNZ POS
INXH
DCRC
JNZ LOOP

JMP STORE

NEG: INR D ; Count Negative number
INXH

DCRC

JNZ LOOP

JMP STORE

POS: INR E ; Count Positive number
INX H

DCRC

JNZ LOOP

JMP STORE

STORE: MOV A E

STA 3001

MOV AD

STA 3002

LXI H 2000
MVIC 14
MVI D 00

MVI B 00

€dited with the demo version of

. Infie-Pro-PDF-Editor

wwuw.iceni.com/unlock.htm

z To rem[ve this notice, visit:

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

MVI E 00

LOOP1: MOV A M ; Main Program for count Zero And Find Maximum.
CMPB

JZ ZERO

IJNC MAX

INX H

DCRC

JNZ LOOP1

JMP STORE1

ZERO: INR D ; For count Zero
INX H

DCRC

JNZ LOOP1

JMP STORE1

MAX: CMP E ; Find Maximum.
JC SKIP

MOV E A

SKIP: INX H

DCRC

IJNZ LOOP1

JMP STORE1

STORE1: MOV A D ; Store Number of zeros
STA 3003
MOV AE

STA 3004 ; Store maximum.

€dited with the demo version of

. Infie-Pro-PDF-Editor

wwuw.iceni.com/unlock.htm

.10
z To rembve this notice, visit:

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

HLT

23. Write an 8085 assembly language program to separate out the numbers
between 2050 and 4010 from an array of ten numbers stored on memory
locations 2000H onwards. Store the separated numbers on a new array from

3000H onwards.
LXI H 2000

LXI D 3000

MVI C 0A

LOOP: MOV A M
CPI 14

JZ NEXT

JC NEXT

CPI1 28

JNC NEXT
STAXD

INXD

NEXT: INX H ; Skip Storing of Number.
DCRC

JNZ LOOP

HLT

24. Write an 8085 assembly language program sort an array of twenty bytes

stored on memory locations 2000H onwards in descending order.
MVI B 14

L2: LXI H 2000
MVIC13

L1: MOVAM
INXH

CMP M

JC SWAP
bACK: DCR C

INZ L1

€dited with the demo version of

—@ —infixPro-PBf-&diter

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

DCRB
INZ L2

HLT

SWAP: MOV D M; This block swap values.
MOV M A

DCXH

MOV M D

INXH

JMP BACK

25. An array of twenty data bytes is stored on memory locations 4100H
onwards. Write an 8085 assembly language program to remove the duplicate
entries from the array and store the compressed array on a new array starting

from memory locations 4200H onwards.
MVI B 14H

MVICO1H
LXIH 4101H
SHLD 3000H
LDA 4100H

STA 4200H

; This program fetch one by one value from original array and sore it on new array if it is not duplicate.
L1: LHLD 3000H
MOV AM

INX H

DCR B

JZ OVER

SHLD 3000H

LXI H 4200H
MOV D C

L2: CMP M

JZ11

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

INXH
DCRD
INZ L2
MOV M A
INR C
JMP L1

OVER: HLT

26. Write an ALP to Pack the two unpacked BCD numbers stored in memory
locations 2200H and 2201H and store result in memory location 2300H.

Assume the least significant digit is stored at 2200H.
LDA 2201

RLC ; Rotate accumulator left 4 times without carry.
RLC

RLC

RLC

ANI FO

MOV CA

LDA 2200

ADDC

STA 2300

HLT

27. Write a set of 8085 assembly language instructions to unpack the upper

nibble of a BCD number.
MVI A 98

MOV B A

ANI FO

RRC ; Rotate accumulator left 4 times without carry.
RRC

RRC

RRC

STA 2000

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

HLT

28. Write Assembly language program to subtract 2 16-bit BCD numbers.
LXI H 3040

LXI D 1020
MOV AL
SUBE
DAA

STA 2000
MOV A H
SBB D
DAA

STA 2001

HLT

29. Write an 8085 assembly language program to continuously read an input
port with address 50H. Also write an ISR to send the same data to output port

with address AOH when 8085 receives an interrupt request on its RST 5.5 pin.
LOOP: IN 50

El

CALL DELAY
JMP LOOP
HLT

DELAY: NOP
NOP

NOP

NOP

RET

; This code must be write at memory location 002C onwards.
OUT A0

JMP LOOP

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

30. Write an ALP to generate a square wave of 2.5 kHz frequency. Use Do bit of

output port ACH to output the square wave.
MVI A 01H

REPEAT: OUT AC
MVI C Count
AGAIN: DCR C
JNZ AGAIN

CMA

JMP REPEAT

Calculation:

, ; _ _ -3
Time period of square wave = 55 » 103 0.4 *10""s.

0.4 %107 3s
Time period of upper half and lower half of square wave = = 0.2 %107 3s.

let processor time period = 0.3 x 107 %s.

0.2 1073
Delay required beween transition of square wave = 037106 ~ 666Tstates

Now

666 =7 + (14 * Count) — 3 + 4
658 = 14 * Count
Count = 47
Count = 2FH
Final Program:
MVI A 01H
REPEAT: OUT AC
MVI C 2F

AGAIN: DCRC

IJNZ AGAIN

CMA

JMP REPEAT

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

€dited with the demo version of

Prof. Vijay M. Shekhat, CE Department | 2150707 — Microprocessor and Interfacing To rmr]I o this]r-‘gke Visit.
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

1. Stack

Stack is a group of memory location in the R/W memory that is used for temporary storage of binary

information during execution of a program.

The starting memory location of the stack is defined in program and space is reserved usually at the high

end of memory map.

The beginning of the stack is defined in the program by using instruction LXI SP, 16-bit memory address.

Which loads a 16-bit memory address in stack pointer register of microprocessor.

Once stack location is defined storing of data bytes begins at the memory address that is one less then
address in stack pointer register. LXI SP, 2099h the storing of data bytes begins at 2098H and continues

in reversed numerical order.

Memory

SP m— 2099
2098
2097
2096
2095
2094
2093
2092

Fig. Stack

Data bytes in register pair of microprocessor can be stored on the stack in reverse order by using the

PUSH instruction.

PUSH B instruction sore data of register pair BC on sack.

Registers

B 08

06

PUSHB
5P <- 5P-1

SP —

SP«-B transfer high order bit to TOS

SP <- 5P-1

SP <-C transfer low order bit to TOS

Fig. PUSH operation on stack

Memory

08

06

2099
2098
2097
2096
2085
2094
2093
2092

Data bytes can be transferred from the stack to respective registers by using instruction POP.

€dited with the demo version of

L L m infix Pro POF Ediior

(

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Registers S
A 5P — 03 00o0s
06 0oo7
B 06 40 = 40 Do0S
D E 0005
0004
H L 00o3
ooo2
oool
POPB
C«<- 5P [transfer to low order bit from TOS
5P =- SP41
B <-5F transfer to high order bit from TOS
3P =- 5P+1

Fig. POP operation on stack

Instruction necessary for stack in 8085

LXI SP, 2095 | Load the stack pointer register with a 16-bit address.

PUSH B/D/H | It copies contents of B-C/D-E/H-L register pair on the stack.

PUSH PSW Operand PSW represents Program status word meaning contents of accumulator and flags.
POP B/D/H It copies content of top two memory locations of the stack in to specified register pair.

POP PSW It copies content of top two memory locations of the stack in to B-C accumulator and flags
respectively.

2. Subroutine

e Asubroutine is a group of instruction that performs a subtask of repeated occurrence.
e Asubroutine can be used repeatedly in different locations of the program.

Advantage of using Subroutine
e Rather than repeat the same instructions several times, they can be grouped into a subroutine that is
called from the different locations.

Where to write Subroutine?
e In Assembly language, a subroutine can exist anywhere in the code.
e However, it is customary to place subroutines separately from the main program.

Instructions for dealing with subroutines in 8085.
e The CALL instruction is used to redirect program execution to the subroutine.

o When CALL instruction is fetched, the Microprocessor knows that the next two new Memory
location contains 16bit subroutine address.

o Microprocessor Reads the subroutine address from the next two memory location and stores the
higher order 8bit of the address in the W register and stores the lower order 8bit of the address in
the Z register.

o Push the Older address of the instruction immediately following the CALL onto the stack [Return
address]

o Loads the program counter (PC) with the new 16-bit address supplied with the CALL instruction from
WZ register.

e The RET instruction is used to return.

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Darshan

Institute of Engineering & Technology

q>

e Number of PUSH and POP instruction used in the subroutine must be same, otherwise, RET instruction

will pick wrong value of the return address from the stack and program will fail.

instruction(s)
CALL sub1——

[

instruction(s)
EXIT

subl:
instruction(s)
RETURMN

Fig. Subroutine

e Example: write ALP to add two numbers using call and subroutine.

LXI H 2000 ; Load memory address of operand

MOV B M ; Store first operand in register B

INX H ;Increment H-L pair

MOV A M ; Store second operand in register A
CALL ADDITION ; Call subroutine ADDITION

STA 3000 ; Store answer
HLT

ADDITION: ADD B ; Add Aand B
RET ; Return

Conditional call and return instruction available in 8085

CC 16-bit address

Call on Carry, Flag Status: CY=1

CNC 16-bit address

Call on no Carry, Flag Status: CY=0

CP 16-bit address

Call on positive, Flag Status: S=0

CM 16-bit address

Call on minus, Flag Status: S=1

CZ 16-bit address

Call on zero, Flag Status: Z=1

CNZ 16-bit address

Call on no zero, Flag Status: Z=0

CPE 16-bit address

Call on parity even, Flag Status: P=1

CPO 16-bit address

Call on parity odd, Flag Status: P=0

RC Return on Carry, Flag Status: CY=1
RNC Return on no Carry, Flag Status: CY=0
RP Return on positive, Flag Status: S=0
RM Return on minus, Flag Status: S=1

RZ Return on zero, Flag Status: Z=1

RNZ Return on no zero, Flag Status: Z=0
RPE Return on parity even, Flag Status: P=1
RPO Return on parity odd, Flag Status: P=0

€dited with the demo version of

—@ —infixPro-PBf-Editer

(4

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

q>

Darshan

Institute of Engineering & Technology

3. Applications of Counters and Time Delays

1. Traffic Signal

2. Digital Clocks

3. Process Control

4. Serial data transfer
4. Counters

e A counter is designed simply by loading appropriate number into one of the registers and using INR or
DNR instructions.

e Loop is established to update the count.

e Each count is checked to determine whether it has reached final number; if not, the loop is repeated.

5. Time

NO

Delay

Initialize

| YES

1. MVI C,05

2. LOOP: MOV A,C

3.

4.

5.

6. HLT
Fig. Counter

ouT 01

DCR C

JNZ LOOP

e Each instruction passes through different combinations of Fetch, Memory Read, and Memory Write

cycles.

e Knowing the combinations of cycles, one can calculate how long such an instruction would require to
complete.

e Itis counted in terms of number of T-states required.

e (Calculating this time we generate require software delay.

Time Delay Using Single Register

Label Opcode | Operand | Comment T-states
MVI C,05h ; Load Counter 7
LOOP: DCR C ; Decrement Counter 4
INZ LOOP ; Jump back to Decr. C 10/7
MVI C 05 DCR C JNZ LOOP (true) JNZ LOOP (false)
Mchine Cycle: F+ R=2 | Mchine Cycle: F=1 | Mchine Cycle: F+R+R=3 Mchine Cycle: F+R =3
T-States: 4T +3T=7T | T-States: 4T =4T T-States: 4T + 3T +3T=10T | T-States:4T+3T=7T

€dited with the demo version of

T infix Pro POF Ediior

(4

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Instruction MVI C, 05h requires 7 T-States to execute. Assuming, 8085 Microprocessor with 2MHz clock
frequency. How much time it will take to execute above instruction?
Clock frequency of the system (f) = 2 MHz
Clock period (T)=1/f=% * 10-6 = 0.5 us
Time to execute MVI =7 T-states * 0.5 s
=35upus
Now to calculate time delay in loop, we must account for the T-states required for each instruction, and
for the number of times instructions are executed in the loop. There for the next two instructions:
DCR: 4 T-States
INZ: 10 T-States
14 T-States

Here, the loop is repeated for 5 times.
Time delay in loop T, with 2MHz clock frequency is calculated as:
T.=T * Loop T-sates * Nyg ----------------- (1)
T. :Time Delay in Loop
T :Clock Frequency
N1o : Equivalent decimal number of hexadecimal count loaded in the delay register.
Substituting value in equation (1)
T.=(0.5 * 10° * 14 * 5)

=35ps
If we want to calculate delay more accurately, we need to accurately calculate execution of JNZ
instruction i.e
If INZ = true, then T-States = 10
Else if INZ =false, then T-States = 7
Delay generated by last clock cycle:
= 3T * Clock Period
=3T *(1/2 * 10°)
=15ps
Now, the accurate loop delay is:
Tia=T. - Delay generated by last clock cycle
Ta=35us-1.5us
Tia=33.5 s
Now, to calculate total time delay
Total Delay = Time taken to execute instruction outside loop + Time taken to execute loop instructions
To=To+Tia
=(7*0.5us)+33.5us
=3.5us+33.5pus
=37 pus
In most of the case we are given time delay and need to find value of the counter register which decide
number of times loop execute.
For example: write ALP to generate 37 us delay given that clock frequency if 2 MHz.
Single register loop can generate small delay only for large delay we use other technique.

€dited with the demo version of

—@ —infixPro-PBf-Editer

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Time Delay Using a Register Pair

Time delay can be considerably increased by setting a loop and using a register pair with a 16-bit number

(FFFF h).

A 16-bit is decremented by using DCX instruction.

Problem with DCX instruction is DCX instruction doesn’t set Zero flag.
Without test flag, Jump instruction can’t check desired conditions.
Additional technique must be used to set Zero flag.

Label | Opcode | Operand | Comment T-states
LXI B,2384 h | ; Load BC with 16-bit counter 10

LOOP: | DCX B ; Decrement BC by 1 6
MOV A C ; Place contents of Cin A 4
ORA B ; OR B with C to set Zero flag 4
INZ LOOP ; if result not equal to 0, 10/7 jump back to loop 10/7

Here the loop includes four instruction:

Total T-States = 6T + 4T + 4T + 10T

= 24 T-states

The loop is repeated for 2384 h times.
Converting (2384);6 into decimal.

2384 h=(2*16%)+(3* 16%) + (8 * 16%) + (4 * 16°)
=8192 + 768 + 128 + 4 = 9092

Clock frequency of the system (f)= 2 MHz

Clock period (T) =1/f=%*10° =0.5 us

Now, to find delay in the loop

T=T * Loop T-sates * Ny

=0.5 *24 * 9092

=109104 us = 109 ms (without adjusting last cycle)

€dited with the demo version of
T tnfix Pro PDF Editor

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Time Delay Using a LOOP within a LOOP

LOOP2

-

Load Register B

Fig. Time Delay Using a LOOP within a LOOP

LOOP1

Load RegisterC

A4

Decrement Register C

Is
Register
Cc=0?

Decrement Register B

Is
Register
B=0?

Label Opcode | Operand | T-states
MVI B,38h 7T
LOOP2: MVI C,FFh 7T
LOOP1: DCR C 4T
INZ LOOP1 10/7T
DCR B a7
INZ LOOP2 10/7T

e (Calculating delay of inner LOOP1: Tiy

T.=T * Loop T-states * Ny

= 0.5 * 14* 255

=1785us=1.8 ms

Tiu= TL— (3T states* clock period)
=1785-(3*% * 10°)
=1785-1.5=1783.5 ps

e Now, Calculating delay of outer LOOP2: T\,

e CounterB:(38)1 = (56)10 So loop2 is executed for 56 times.

T-States=7 +4 + 10 = 21 T-States
T2 =56 (T + 21 T-States * 0.5)
=56(1783.5 us + 10.5)

€dited with the demo version of

=T infix Pro POF Ediior

(

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

=100464 pus
T2 =100.46 ms

Disadvantage of using software delay

e Accuracy of time delay depends on the accuracy of system clock.

e The Microprocessor is occupied simply in a waiting loop; otherwise it could be employed to perform
other functions.

e The task of calculating accurate time delays is tedious.

e Inreal time applications timers (integrated timer circuit) are commonly used.

e Intel 8254 is a programmable timer chip that can be interfaced with microprocessor to provide timing
accuracy.

e The disadvantage of using hardware chip include the additional expense and the need for extra chip in
the system.

6. Counter design with time delay
Initialize Counter

Display Pt Load Delay

Register

Time Delay X
Decrement
Delay Register

Update Count

Is Delay
Register=0?

Is Count
Complete?

Fig. 6. Counter design with time delay

e Itis combination of counter and time delay.
e | consist delay loop within counter program.

7. Hexadecimal counter program

e Write a program to count continuously in hexadecimal from FFh to 00h with 0.5 pus clock period. Use
register C to set up 1 ms delay between each count and display the number at one of the output port.

e Given:

e Counter=FFh

e Clock Period T=0.5 pus

€dited with the demo version of

To rem[ve this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Total Delay = 1ms
Output:
To find value of delay counter
Program
MVI B,FF
LOOP:MOV A,B
ouTo01
MVI C, COUNT; need to calculate delay count
DELAY: DCRC
JNZ DELAY
DCRB
JNZ LOOP
HLT
Calculate Delay for Internal Loop
Tl = T-States * Clock Period * COUNT
=14 * 0.5 * 10-6 * COUNT
Tl = (7.0 * 10-6)* COUNT
Calculate Delay for Outer Loop:
TO = T-States * Clock Period
=35*0.5*10-6
TO =17.50s
Calculate Total Time Delay:
TD=TO +TL
1ms =17.5*10-6+ (7.0 * 10-6)* COUNT
1*10-3=17.5*10-6 + (7.0 * 10-6)* COUNT
COUNT="1 % 10-3 - 17.5 = 10-6" /"7.0 * 10-6"
COUNT=(140)10 = (8C)16

. 0-9 up/down counter program

Write an 8085 assembly language program to generate a decimal counter (which counts 0 to 9
continuously) with a one second delay in between. The counter should reset itself to zero and repeat
continuously. Assume a crystal frequency of 1MHz.
Program
START: MVI B,00H
DISPLAY: OUT 01
LXI H, COUNT
LOOP: DCX H
MOV A, L
ORAH
JNZ LOOP
INRB
MOV A,B
CPI 0A
JNZ DISPLAY

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

JZ START
9. Code Conversion

Two Digit BCD Number to Binary Number

1. Initialize memory pointer to given address (2000).
2. Get the Most Significant Digit (MSD).
3. Multiply the MSD by ten using repeated addition.
4. Add the Least Significant Digit (LSD) to the result obtained in previous step.
5. Store the HEX data in Memory.
e Program

LXI H 2000

MOV CM

MOV AC

ANI OF ; AND operation with OF (00001111)

MOV EA

MOV AC

ANI FO ; AND operation with FO (11110000)
JZ SB1 ; If zero skip further process and directly add LSD
RRC ; Rotate 4 times right

RRC

RRC

RRC

MOV DA

MVI A 00

L1: ADI OA ; Loop L1 multiply MSD with 10
DCRD

INZ L1

SB1: ADDE

STA 3000 ; Store result

HLT

8-bit Binary Number to Decimal Number

Load the binary data in accumulator

Compare ‘A’ with 64 (Dicimal 100) if cy = 01, go step 5 otherwise next step

Subtract 64H from ‘A’ register

Increment counter 1 register

Go to step 2

Compare the register ‘A’ with ‘OA’ (Dicimal 10), if cy=1, go to step 10, otherwise next step
Subtract OAH from ‘A’ register

Increment Counter 2 register

L N WDNE

Go to step 6

=
o

. Combine the units and tens to from 8 bit result

[y
=

. Save the units, tens and hundred’s in memory

[EEN
N

. Stop the program execution

Program
MVI B 00

€dited with the demo version of

—@ —infixPro-PBf-&diter

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

LDA 2000

LOOP1: CPI 64 ; Compare with 64H

JCNEXT1 : If Ais less than 64H then jump on NEXT1
SUI 64 ; subtract 64H

INR B

JMP LOOP1

NEXT1: LXIH 2001

MOV M B ; Store MSD into memory

MVI B 00

LOOP2: CPI OA ; Compare with OAH

JCNEXT2; If Ais less than OAH then jump on NEXT2
SUI 0A ; subtract OAH

INR B

JMP LOOP2

NEXT2: MOVDA

MOV A B

RLC

RLC

RLC

RLC

ADDD

STA 2002 ; Store packed number formed with two leas significant digit
HLT

Binary Number to ASCII Number
e Load the given data in A - register and move to B - register
e Mask the upper nibble of the Binary decimal number in A - register
e (Call subroutine to get ASCII of lower nibble
e Storeitin memory
e Move B - register to A - register and mask the lower nibble
e Rotate the upper nibble to lower nibble position
e Call subroutine to get ASCII of upper nibble
e Storeitin memory
e Terminate the program.
LDA 5000 Get Binary Data
MOV B, A
ANI OF ; Mask Upper Nibble
CALL SUB1 ; Get ASCII code for upper nibble
STA 5001
MOV A, B
ANI FO ; Mask Lower Nibble
RLC
RLC
RLC
RLC
CALL suB1 ; Get ASCII code for lower nibble
STA 5002

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

HLT ; Halt the program.
SUB1: CPIOA

JC SKIP

ADI 07
SKIP: ADI 30

RET ; Return Subroutine

ASCII Character to Hexadecimal Number

NouswNRE

Load the given data in A - register

Subtract 30H from A - register

Compare the content of A - register with OAH

If A < OAH, jump to stepb6. Else proceed to next step
Subtract 07H from A - register

Store the result

Terminate the program

Program

LDA 2000

CALL ASCTOHEX

STA 2001
HLT

ASCTOHEX: SUI 30 ; This block Convert ASCII to Hexadecimal.
CPI OA

RC

SUI 07

RET

10. BCD Arithmetic

Add 2 8-bit BCD Numbers

1.

2.
3.
4

Load firs number into accumulator.
Add second number.

Apply decimal adjustment to accumulator.
Store result.

Program

LXI H, 2000H

MOV A, M

INXH

ADD M

DAA

INXH

MOV M, A

HLT

€dited with the demo version of

T infix Pro POF Ediior

(4

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Subtract the BCD number stored in E register from the number stored in the D
register

1. Find 99’s complement of data of register E

2. Add 1 to find 100’s complement of data of register E

3. Add Data of Register D

4. Apply decimal adjustment

e Program
MVI A, 99H
SUBE : Find the 99's complement of subtrahend
INR A : Find 100's complement of subtrahend
ADDD : Add minuend to 100's complement of subtrahend
DAA : Adjust for BCD
HLT : Terminate program execution

11. 16-Bit Data operations

Add Two 16 Bit Numbers

Initialize register C for using it as a counter for storing carry value.
Load data into HL register pair from one memory address (9000H).
Exchange contents of register pair HL with DE.

Load second data into HL register pair (from 9002H).

Add register pair DE with HL and store the result in HL.

If carry is present, go to 7 else go to 8.

Increment register C by 1.

Store value present in register pair HL to 9004H.

LN WDNPR

Move content of register C to accumulator A.

=
o

. Store value present in accumulator (carry) into memory (9006H).

[y
[y

. Terminate the program.

Program

MVI C, O0H

LHLD 9000H

XCHG ; Exchange contents of register pair HL with DE

LHLD 9002H

DAD D ; Add register pair DE with HL and store the result in HL

JNC AHEAD ; If carry is present, go to AHEAD

INR C

AHEAD: SHLD 9004H ; Store value present in register pair HL to 9004H
MOV A, C

STA 9006H ; Store value present in accumulator (carry) into memory (9006H)
HLT

Subtract Two 16 Bit Numbers

1. Load first data from Memory (9000H) directly into register pair HL.

2. Exchange contents of register pair DE and HL.

3. Load second data from memory location (9002H) directly into register pair HL.

€dited with the demo version of

T infix Pro POF Ediior

To rembve this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

Lo N

10.
11.

Move contents of register E into accumulator A.

Subtract content of register L from A.

Move contents of accumulator A into register L.

Move contents of register D into accumulator A.

Subtract with borrow contents of register H from accumulator A.

Move contents of accumulator A into register H.

Store data contained in HL register pair into memory (9004H).

Terminate the program.

Program

LHLD 9000H ; Load first data from Memory (9000H) directly into register pair HL
XCHG ; Exchange contents of register pair DE and HL.

LHLD 9002H ; Load second data from memory location (9002H) directly into register pair HL
MOV A, E

SUB L

MOV L, A

MOV A, D

SBB H ; Subtract with borrow contents of register H from accumulator A

MOV H, A

SHLD 9004H ; Store data contained in HL register pair into memory (9004H)

HLT

—.—

(4

€dited with the demo version of
infix Pro POF Ediior

To rembve this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

«> Darshan |

Institute of Engineering & Technology

1.

Ans.

Draw and explain the block diagram of the programmable peripheral

interface (8255A).
8255A ARCHITECTURE | 1
Power +5V i
] PA AN 10
Suppliers | GND Group A <: <:> \‘_‘>
' Control Port A PA,-PA,
Bidirectional |
Data .
bus
Data Bus Group A &
= Port C 1/
Buffer ; b pe,
8-bit Internal data bus Upper
/|
E = Group B - I/0
e T G
Ay—] Read Lower
Ao — Write Group B <:
Control
RESET— Cf“t_m[
P —— Port B N 7]

Figure: 8255A Architecture

Read Write Control Logic

RD (READ)

This is an active low signal that enables Read operation. When signal is
low MPU reads data from selected 1/0 port of 8255A

WR (WRITE)

This is an active low signal that enables Write operation. When signal
is low MPU writes data into selected I/O port or control register

RESET

This is an active high signal, used to reset the device. That means clear
control registers

()

This is Active Low signal.

When it is low, then data is transfer from 8085

CS signal is the master Chip Select.

Ao and A; specify one of the I/O ports or control register

€dited with thcidemo version of
() Infix Aro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

cs Al A0 Selected
0 0 0 PORT A
0 0 1 PORTB
0 1 0 PORTC
0 1 1 Control Register
1 X X 8255A is not selected
Data Bus Buffer
This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system
data bus.

Data is transmitted or received by the buffer upon execution of input or output
instructions by the CPU.

Control words and status information are also transferred through the data bus buffer.

Group A and Group B Controls

- The functional configuration of each port is programmed by the systems software. In
essence, the CPU "outputs" a control word to the 8255.
The control word contains information such as "mode", "bit set", "bit reset", etc., that
initializes the functional configuration of the 8255.
Each of the Control blocks (Group A and Group B) accepts "commands" from the
Read/Write Control logic, receives "control words" from the internal data bus and
issues the proper commands to its associated ports.

Ports A, B, and C
The 8255 contains three 8-bit ports (A, B, and C).
All can be configured to a wide variety of functional characteristics by the system
software but each has its own special features or "personality" to further enhance the
power and flexibility of the 8255.
Port A One 8-bit data output latch/buffer and one 8-bit data input latch.
Both "pull-up" and "pull-down" bus-hold devices are present on Port A.
Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.
Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for
input). This port can be divided into two 4-bit ports under the mode control.
Each 4-bit port contains a 4-bit latch and it can be used for the control signal output
and status signal inputs in conjunction with ports A and B.

€dited with the/demo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

2. Explain 8255A 1/0 Operating Modes
Ans. 8255A has three different I/O operating modes:

1. ModeO

2. Mode1l

3. Mode 2
Mode 0

Simple I/O for port A,B and C

In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports.
Each port can be programmed in either input mode or output mode where outputs
are latched and inputs are not latched.

Ports do not have handshake or interrupt capability.

Mode 1: Input or Output with Handshake

Handshake signal are exchanged between MPU and peripheral prior to data transfer.
In this mode, Port A and B is used as 8-bit I/O ports.

Mode 1 is a handshake Mode whereby ports A and/or B use bits from port C as
handshake signals.

In the handshake mode, two types of I/O data transfer can be implemented: status
check and interrupt.

Port A uses upper 3 signals of Port C: PC3, PC4, PC5

Port B uses lower 3 signals of Port C : PCO, PC1, PC2

PC6 and PC7 are general purpose 1/0 pins
Mode 1 Port A

PORT A

“4|e—STB,

INTE

s f—> IBF,

—— INTR,

K PORTB
B | [pC2le—T5T8B,

PET " ¢lBEy

co— INTRg

Mode1 PortB |
Figure: Model Input Handshake
STB (Strobe Input):
This active low signal is generated by a peripheral device to indicate that, it has
transmitted a byte of data. The 8255A, in response to STB, generates IBF and INTR.

€dited with theddemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

IBF (Input Buffer Full)
This signal is acknowledged by 8255A to indicate that the input latch has received the
data byte. It will get reset when the MPU reads the data.

INTR(Interrupt Request)
This is an output signal that may be used to interrupt the MPU. This signal is generated
if STB, IBF and INTE (internal flip-flop) are all at logic 1. It will get reset by the falling
edge of RD

INTE(Interrupt Enable)

This signal is an internal flip-flop, used to enable or disable the generation of INTR
signal.

The interrupt enable signal is neither an input nor an output; it is an internal bit
programmed via the PC4 (port A) or PC2 (port B) bits.

Mode 2
In this mode, Port A can be configured as the bidirectional port and Port B either in
Mode 0 or Mode 1.
Port A uses five signals from Port C as handshake signals for data transfer.

The remaining three signals from Port C can be used either as simple 1/O or as
handshake for port B.

3. Explain BSR Mode of the programmable peripheral interface (8255A)
with necessary diagrams.

Ans. - These are two basic modes of operation of 8255.
I/0 mode and Bit Set-Reset mode (BSR).
In 1/0O mode, the 8255 ports work as programmable I/0O ports, while in BSR mode only
port C (PCO-PC7) can be used to set or reset its individual port bits.
Under the I/O mode of operation, further there are three modes of operation of 8255,
so as to support different types of applications, mode 0, mode 1 and mode 2.

8255A: BSR(Bit Set/Reset) Mode
In this mode any of the 8-bits of port C can be set or reset depending on Do of the
control word.

The bit to be set or reset is selected by bit select flags D3, D2 and D1 of the CWR (Control
Word Register).

BSR Control Word affects one bit at a time
It does not affect the I/O mode

€dited with thgldemo version of
) Infix Aro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

D, Dg Ds D, D D, D, D,
| 0 ‘ X l X | X | Bit Select ‘ s/R ‘
A |] 7
ST ; R
{BSRMode | (1=set
““““““““““““““ ;""/ ‘ = T i 0=Reset
i Notused, I: 000 PC, | Semmmmemeeee
| GenerallySet=0 | 001 PC,
s 010 PC,
011 PC,
100 PC,
101 PC,
110 PCq
111 PC,

Figure: BSR Mode Control Word

4. Explain 8255A Control Word and Control Register with necessary

diagram.
Ans. Control Register
D
WR
e =t |
l PORT A
00 —EN
7D
Control) e |
Register PORTC U
s
| EN 10 —|gRORTC.L
11 [
A
A —
1 Intern.al 10 PORT C
Aq—| Decoding {01 pnprg PORT B
00 PORTA 01 —IEN

Figure: Control Register 8255A

Control Word: Content of Control register is known as Control Word.

Control word specify an 1/O function for each port this register can be.

€dited with théyemo version of
Infix Aro PDF €ditor

To remove this notice, visit:
wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

————— | & [ealies oo, o, [o, | 0o |
1=1/OMode | | /71— l

0= BSR Mode | i
. PORT C,(PC,-PC,)
1= Input
/ GROUPA 0= Output
PORT C,(PC;-PC,) ' PORT B
1= Input o= 1= Input
0= Qutput 0= Output
PORTA Mode Selection
1= Input I —— 1=Mode 1
0= Output 0= Mode 0
Mode Selection
L 00 = Mode 0
01 =Mode 1
1X = Mode 2

Figure:8255A Control Word

Accessed to write a control word when AO and A1l are at logicl, the register is not
accessible for a read operation.

Bit D7 of the control register either specifies the 1/0O function or the bit Set/Reset
function, as classified in figure 1.

If bit D7=0, bits D6-D0 determine 1/0O function in various mode, as shown in figure 4.
If bit D7=0 port C operates in the bit Set/Reset (BSR) mode.

The BSR control word does not affect the function of port A and B.

5. Whatis the need of the programmable interrupt controller (8259A)?
Draw and explain the block diagram of 8259A.
Ans. - The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for use with the
8085 and 8086 microprocessors.
The 8259 can be used for applications that use more than five numbers of interrupts
from multiple sources.

The main features of 8259 are listed below
Manage eight levels of interrupts.
Eight interrupts are spaced at the interval of four or eight locations.
Resolve eight levels of priority in fully nested mode, automatic rotation mode or
specific rotation mode.
Mask each interrupt individually.
Read the status of pending interrupt, in-service interrupt, and masked interrupt.
Accept either the level triggered or edge triggered interrupt

€dited with thégemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

Institute of Engineering & Technology

8259 Internal Block Diagram

|

INTA INT
D0-D7 =>| Data bus |[s— | 1 T
buffer N { Caontrol logic |
T l | |
E |
. R ol | [1
RD———=| Read/ N <—IRD
WR—| write |— A In-service Priority Interrupt |<— IR1
Al— logic L register |<=> [resolver |<== |request |
(1SR) register |:
co— 1 B (IRR)
U <—IR7
5
CASD =—| Cascade
CAS1 «=—| buffer/ |e— | Interrupt mask register (IMR) |
CAS2 <—|comparator ||

SP/EN———

Read/Write Logic
- Itis typical R/W logic.
When address line AO is at logic 0, the controller is selected to write a command word
or read status.
The Chip Select logic and AO determine the port address of controller.

Control Logic
It has two pins: INT as output and INTA as input.
The INT is connected to INTR pin of MPU

Interrupt Registers and Priority Resolver
1. Interrupt Request Register (IRR)
2. Interrupt In-Service Register (ISR)
3. Priority Resolver
4. Interrupt Mask Register (IMR)

Interrupt Request Register (IRR) and Interrupt In-Service Register (ISR)
Interrupt input lines are handled by two registers in cascade — IRR and ISR
IRR is used to store all interrupt which are requesting service.

ISR is used to store all interrupts which are being serviced.

€dited with thefdemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

Darshan

Institute of Engineering & Technology

Ans.

Priority Resolver
This logic block determines the priorities of the bit set in IRR.

IRo is having highest priority, IR7 is having lowest priority

Interrupt Mask Register

It stores bits which mask the interrupt lines to be masked
IMR operates on the IRR.
Masking of high priority input will not affect the interrupt request lines.

Cascade Buffer / Comparator

This block is used to expand the number of interrupt levels by cascading two or more
8259As.

State the difference between the vectored and non-vectored
interrupts. Explain vectored interrupts of the 8085 microprocessor.

Difference between the vectored and non-vectored interrupts
VECTORED INTERRUPT

In vectored interrupts, the processor automatically branches to the specific address
in response to an interrupt.

In vectored interrupts, the manufacturer fixes the address of the ISR to which the
program control is to be transferred.

The TRAP, RST 7.5, RST 6.5 and RST 5.5 are vectored interrupts.

TRAP is the only non-maskable interrupt in the 8085.

NON-VECTORED INTERRUPT

In non-vectored interrupts the interrupted device should give the address of the
interrupt service routine (ISR).

The INTR is a non-vectored interrupt.

Hence when a device interrupts through INTR, it has to supply the address of ISR
after receiving interrupt acknowledge signal.

Interrupt Maskable Vectored
INTR Yes No
RST 5.5 Yes Yes
RST 6.5 Yes Yes
RST 7.5 Yes Yes
TRAP No Yes

€dited with thgglemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

d> Darshan |

Institute of Engineering & Technology

Explain vectored interrupts of the 8085 microprocessor
The vector addresses of 8085 interrupts are given below:

Software Interrupt Hardware Interrupt
RST O 0000H RST 7.5 003CH
RST 1 0008H RST 6.5 0034H
RST 2 0010H RST 5.5 002CH
RST 3 0018H TRAP 0024H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

Software Interrupt
The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6
and RST 7.
The software interrupts cannot be masked and they cannot be disabled.

Hardware Interrupt
The vectored hardware interrupts of 8085 are TRAP, RST 7.5, RST 6.5, RST 5.5.
An external device, initiates the hardware interrupts of 8085 by placing an appropriate
signal at the interrupt pin of the processor.
The processor keeps on checking the interrupt pins at the second T -state of last
machine cycle of every instruction.
If the processor finds a valid interrupt signal and if the interrupt is unmasked and
enabled, then the processor accepts the interrupt.
The acceptance of the interrupt is acknowledged by sending an INTA signal to the
interrupted device.
The processor saves the content of PC (program Counter) in stack and then loads the
vector address of the interrupt in PC. (If the interrupt is non-vectored, then the
interrupting device has to supply the address of ISR when it receives INTA signal).
It starts executing ISR in this address.
At the end of ISR, a return instruction, RET will be placed.
When the processor executes the RET instruction, it POP the content of top of stack
to PC.
Thus the processor control returns to main program after servicing interrupt.

€dited with thé¢lemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

> Darshan

Institute of Engineering & Technology

7. Explain Interfacing Seven-Segment LEDs as an Output

Ans. - Interface the 8085 Microprocessor System with seven segment display through its
programmable 1/0O port 8255.
Seven segment displays is often used in the digital electronic equipment to display
information regarding certain process.
I/O devices (or peripherals) such as LEDs and keyboards are essential components of
the microprocessor-based or microcontroller-based systems.
Seven-segment LEDs Often used to display BCD numbers (1 through 9) and a few
alphabets.
A group of eight LEDs physically mounted in the shape of the number eight plus a
decimal point.
Each LED is called a segment and labeled as ‘a’ through ‘g’.

/. /
[t

d \
decimal point

Figure: Seven Segment LED

Commonly used output peripherals in embedded systems are
LEDs, seven-segment LEDs, and LCDs; the simplest is LED

Two ways of connecting LEDs to 1/0 ports:
1. LED cathodes are grounded and logic 1 from the 1/0 port turns on the LEDs - The
current is supplied by the /0 port called current sourcing.
2. LED anodes are connected to the power supply and logic O from the 1/O port turns on
the LEDs - The current is received by the chip called current sinking.

€dited with thé Pemo version of
Y Infix Aro PDF €ditor

To & move this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

Dostivated Facatty Commdttod Edunntion

5> Darshan

Institute of Engineering & Technology

PORTB LED7 PORTC LED7
RE7 A —— RC7 a—
RB6 A RS aa—k——
RBS A > —— RGS - aa—k——
RB4 > ——— R4 a—k——+sv
RB3 > RG3 aa———
RB2 A S —r R A
RB1 —W{>|7 RC1 —'VV\/‘—-*<]7
RBO A > —— RCO A AA—K———
'y

W L ¥
LED O = LEDO
Common Cathode Common Anode
Active high Active low

= |nacommon anode seven-segment LED All anodes are connected together to a
power supply and cathodes are connected to data lines
= Logic 0 turns on a segment.
Example:
To display digit 1, so all segments except b and c should be off.

Common Cathode

WWWW

c b
}
3,

n? D(, n»_q 04 D3 [I)l I)U

To Data Lines
Through an Interfacing Device

Byte 11111001 = F9H will display digit 1.

[}

A

d

€dited with &eldemo version of
o Infix Aro PDF €ditor

To & move this notice, visit:
z wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

<> Darshan

Institute of Engineering & Technology

8. ExplainI/O interfacing Methods
Ans. There are two method of interfacing memory or I/O devices with the microprocessor are as
follows:
1) I/0 mapped I/O

2) Memory mapped 1/0

1) I/O MAPPED I/O

In this technique, I/O device is treated as an /0 device and memory as memory. Each
I/O device uses eight address lines.

If eight address lines are used to interface to generate the address of the I/O port,
then 256 Input/output devices can be interfaced with the microprocessor.

The 8085 microprocessor has 16 bit address bus, so we can either use lower order
address lines (A0 — A7) or higher order address lines(A8 — A15) to address I/O devices.
We used lower order address bus & address available on AO— A7 will be copied on the
address lines A8 — A15.

In1/0O mapped /0, the complete 64 Kbytes of memory can be used to address memory
locations separately as the address space is not shared with I/0 devices.

In this interface type, the data transfer is possible between accumulator (A) and 1/O
devices only. Arithmetic and logical operation are not possible directly.

As 8 bit device address used, Address decoding is simple so less hardware is required.

The separate control signals are used to access |/O devices and memory such as IOR,
IOW for I/O port and MEMR, MEMW for memory hence memory location are
protected from the I/O access.

2) MEMORY MAPPED 1/O

In this technique, 1/0 devices are treated as memory and memory as memory, hence
the address of the I/O devices are as same as that of memory i.e. 16 bit for 8085
microprocessor.

So, the address space of the memory i.e. 64 Kbytes will be shared by the I/0 devices
as well as by memory. All 16 address lines i.e. AO-A15 is used to address memory
locations as well as I/0O devices.

The control signals MEMR and MEMW are used to access memory devices as well as
I/O devices.

€dited with thedemo version of
Y Infix Aro PDF €ditor

To & move this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

> Darshan |

Institute of Engineering & Technology

Comparison of Memory-Mapped 1/0 and Peripheral Mapped I/O

No | Characteristics Memory mapped I/0 1/0 mapped I/0
1 | Device Address 16 bit 8 Bit
2 | Control signals for MEMR & MEMW IOR & IOW
inputs
3 | Instruction All memory related IN and OUT instructions only
Available instruction : LDA; STA;
LDAX; STAX; MOV M,R;
ADD M; SUB M
4 | Data Transfer Between any register and | Between I/0 device and
/0 devices. Accumulator only.
5 | Maximum Numbers | Memory Map (64K) is I/0 Mapped is independent of
of I/Os Possible shared between I/0s and memory map; 256 Input and
System memory. 256 output devices can be
connected.
6 | Execution Speed 13 T-State (LDA, STA, ..) 10 T-State
7 T-State (MOV M,R)
7 | Hardware More hardware is needed | Less hardware is needed to
Requirement to decode 16 bit address decode 8 bit address
8 | Other Feature Arithmetic and logical Not available
operations are directly
performed with [/0
devices.

€dited with thelemo version of
Y Infix Aro PDF €ditor

To remove this notice, visit:
l wwuw.iceni.com/unlock.htm

http://www.iceni.com/unlock-pro.htm

MODULE 3

INTRODUCTION TO EMBEDDED SYSTEM

System

A system is an arrangement in which all its unit assemble work together according to a set of
rules. It can also be defined as a way of working, organizing or doing one or many tasks
according to a fixed plan. For example, a watch is a time displaying system. Its components
follow a set of rules to show time. If one of its parts fails, the watch will stop working. So we can
say, in a system, all its subcomponents depend on each other.

Embedded System

As its name suggests, Embedded means something that is attached to another thing. An
embedded system can be thought of as a computer hardware system having software embedded
in it. An embedded system can be an independent system or it can be a part of a large system. An
embedded system is a microcontroller or microprocessor based system which is designed to
perform a specific task. For example, a fire alarm is an embedded system; it will sense only
smoke.

An embedded system has three components —
o It has hardware.
o It has application software.

o It has Real Time Operating system (RTOS) that supervises the application software and
provide mechanism to let the processor run a process as per scheduling by following a
plan to control the latencies. RTOS defines the way the system works. It sets the rules
during the execution of application program. A small scale embedded system may not
have RTOS.

So we can define an embedded system as a Microcontroller based, software driven, reliable, real-
time control system.

Characteristics of an Embedded System

o Single-functioned — An embedded system usually performs a specialized operation and
does the same repeatedly. For example: A pager always functions as a pager.

o Tightly constrained — All computing systems have constraints on design metrics, but
those on an embedded system can be especially tight. Design metrics is a measure of an
implementation’s features such as its cost, size, power, and performance. It must be of a

size to fit on a single chip, must perform fast enough to process data in real time and
consume minimum power to extend battery life.

Reactive and Real time — Many embedded systems must continually react to changes in
the system'’s environment and must compute certain results in real time without any
delay. Consider an example of a car cruise controller; it continually monitors and reacts
to speed and brake sensors. It must compute acceleration or de-accelerations repeatedly
within a limited time; a delayed computation can result in failure to control of the car.

Microprocessors based — It must be microprocessor or microcontroller based.

Memory — It must have a memory, as its software usually embeds in ROM. It does not
need any secondary memories in the computer.

Connected — It must have connected peripherals to connect input and output devices.

HW-SW systems — Software is used for more features and flexibility. Hardware is used
for performance and security.

ASIP and ASIC Analog 10
Memory
IS Digial 10
Advantages

Easily Customizable
Low power consumption
Low cost

Enhanced performance

Disadvantages

« High development effort
o Larger time to market
Basic Structure of an Embedded System
The following illustration shows the basic structure of an embedded system —

—__ T| lProcessor & ’
l\ Sensol i | Converter | | AsIc Converter Actuator ki

A

) \ 4 N
»| Memory l

e Sensor — It measures the physical quantity and converts it to an electrical signal which
can be read by an observer or by any electronic instrument like an A2D converter. A
sensor stores the measured quantity to the memory.

e A-D Converter — An analog-to-digital converter converts the analog signal sent by the
sensor into a digital signal.

e Processor & ASICs — Processors process the data to measure the output and store it to
the memory.

e D-A Converter — A digital-to-analog converter converts the digital data fed by the
processor to analog data

e Actuator — An actuator compares the output given by the D-A Converter to the actual
(expected) output stored in it and stores the approved output.

Microprocessor vs Microcontroller

Three Key Differences Between Microcontrollers and Microprocessors

o Cost: Generally, microcontrollers cost less than microprocessors. Microprocessors are
typically manufactured for use with more expensive devices. They are also significantly
more complex, as they are meant to perform a variety of computational tasks while
microcontrollers usually perform a dedicated function. With a microcontroller, engineers
write and compile the code intended for the specific application and upload it into the
microcontroller, which internally houses all of the necessary computing features and
components to execute the code.

e Speed: When it comes to clock speed, there is a significant difference. This relates back
to the idea that microcontrollers are meant to handle a specific task or application, while a
microprocessor is meant for more complex, robust, and unpredictable computing tasks.
That means using just the right amount of speed and power to get the job done — no more
and no less. As a result, many microprocessors are clocking speeds of up to 4 GHz while
microcontrollers can operate with much slower speeds of 200 MHz or less.

e Power Consumption: One of the key advantages associated with microcontrollers is
their low power consumption. A computer processor that performs a dedicated task
requires less speed, and therefore less power, than a processor with robust computational
capacity. Power consumption plays an important role in implementation design: a
processor that consumes a lot of power may need to be plugged in or supported by an
external power supply, whereas a processor that consumes limited power could be

powered for a long time by just a small battery.

Basic Difference

Microprocessor

Microprocessor acts as the heart of
computer system.

It is a processor in which memory and
I/O output component is connected
externally.

Since memory and I/O output is to be
connected externally. Therefore the
circuit is more complex.

It cannot be used in a compact system.
Therefore microprocessor is inefficient.

The microprocessor has fewer registers.
Therefore most of the operations are
memory-based.

A microprocessor having a zero status
flag.

It is mainly used in personal computers.

Microcontroller

The microcontroller acts as the heart of
the embedded system.

It is a -controlling device in which
memory and I/O output component are
present internally.

Since on-chip memory and I/O output
component is available. Therefore the
circuit is less complex.

It can be used in a compact system.
Therefore microcontroller is more
efficient.

The microcontroller has more registers.
Therefore a program is easier to write.

A microcontroller has no zero flag.

It is mainly used in washing machines,
air conditioners etc.

Microprocessor

CONTROL
UNIT
ALU CPU REGISTERS
MICROPROCESSOR
ADDRESS BUS DATA BUS CONTROL BUS

Microprocessor assimilates the function of a
central processing unit (CPU) on to a single
integrated circuit (IC).

Microprocessors are mainly used in designing
general-purpose systems from small to large
and complex systems like supercomputers.

Microprocessors are basic components of
personal computers.

The computational
microprocessor is very high.
perform complex tasks.

A microprocessor-based system can perform
numerous tasks.

Microprocessors have integrated Math
Coprocessor. Complex mathematical
calculations which involve floating point can
be performed with great ease.

capacity of the
Hence can

The main task of the microprocessor is to
perform the instruction cycle repeatedly. This
includes fetch, decode and execute.

In order to build or design a system
(computer), a microprocessor has to be
connected externally to some other

components like Memory (RAM and ROM) and
Input / Output ports.

The overall cost of a system built using a
microprocessor is high. This is because of the
requirement of external components.

Generally, power consumption and dissipation

Microcontroller

MICROCONTROLLER
'O PORTS ROM
COUNTERS TIMERS
ADDRESS BUS DATA BUS CONTROL BUS

A microcontroller can be considered as a small
computer that has a processor and some
other components in order to make it a
computer.

Microcontrollers are used
controlled devices.

in automatically

Microcontrollers are used in

embedded systems

Less computational capacity when compared
to microprocessors. Usually used for simpler
tasks.

A microcontroller based system can perform
single or very few tasks.

Microcontrollers do not have math
coprocessors. They use software to perform
floating-point calculations which slows down
the device.

In addition to performing the tasks of fetch,
decode and execute, a microcontroller also
controls its environment based on the output
of the instruction cycle.

generally

The IC of a microcontroller has memory (both
RAM and ROM) integrated into it along with
some other components like I / O devices and
timers.

The cost of a system built using a
microcontroller is less as all the components
are readily available.

Power consumption is less.

are high because of the external devices.
Hence it requires an external cooling system.

The clock frequency is very high usually in the
order of Giga Hertz.

Instruction throughput is given higher priority
than interrupt latency.

Have few bit manipulation instructions

Generally, microprocessors are not used in
real-time systems as they are severely
dependent on several other components.

Current Trends in Embedded Systems

The clock frequency is less usually in the
order of MegaHertz.

In contrast, microcontrollers are designed to
optimize interrupt latency.

Bit manipulation is powerful and widely used
feature in microcontrollers. They have
numerous bit manipulation instructions.

Microcontrollers are used to handle real-time
tasks as they are single programmed, self-
sufficient and task-oriented devices.

An embedded system is an application-specific system designed with a combination of hardware
and software to meet real-time constraints. The key characteristics of embedded industrial
systems include speed, security, size, and power. The major trends in the embedded systems
market revolve around the improvement of these characteristics.

To give context into how large the embedded systems industry is, here are a few statistics:

o The global market for the embedded systems industry was valued at $68.9 billion in 2017
and is expected to rise to $105.7 billion by the end of 2025.

e 40% of the industrial share for embedded systems market is shared by the top 10 vendors.

e In 2015, embedded hardware contributed to 93% of the market share and it is expected to
dominate the market over embedded software in the upcoming years as well.

https://internetofthingsagenda.techtarget.com/definition/embedded-system
http://www.digitaljournal.com/pr/4006746

©
C:H’"“E’VQES N EMBE DpED S’ysmrd 7365/5;/\/
— The cim//en@cs thal ane en.cow\éeoQ clwzma -t c.b_stﬂ':

?h.OCa.SS ane not ComPuJ:Uz aelatec] 5 Aathon 'ffou adle.

mechanfeal on electiical
— of these |, +he most clm,duﬁ' aneas o .
(@) Hardwone - (b) deadlimes. (&) powen Consumpher

() LLf’ﬁAﬂGl.é&‘ocQt_g{ (e) QQeti’odoLQng .

(a) Havelware C}I—aup muele RMJW do we need ?)

> e choice of B Randioane Plase o magor 200
oA Meeking WMSM cosl Constranb, andl

Mﬁcmwwums-

'_—>(ﬂ\e_ chowce $bowldnt be oo O’X./omlwe_ o4 Lo chea
 focther & Shadd be exack o et the oloadling.

(b) Deadlimes CHow do we meuk doadlines)

ﬁh&z&m:jdwﬁll‘n&s L&aJ\oH_a,o,_ C.O\a.l,l_mje x/_oluaru
©an embedded C‘DMFMi:Mq Systemn . A

> tne. method of rrw.o;tu'ﬁ doadlzmes Lo the boudz

%ommd:f«bal’_), Imﬁu'ame,tkoc('tﬁ\n.sPech of- o5 v

Riw ia ircmonsed. So that the]Dmav*wam Auns fastes
O‘fcomse. , that m™Makes the Sa.s(:em mMove "”‘{’e"&fv’e_

(C) 'Powev COMW‘N—P&W) CHOWGLOMNWW% /owaﬁ&rm
> jn bakteny - Fowe;ne APFQLQAJ:IOQS Powes Consumphe
- ex,tum;ij mfoﬂ:m\l:/ eren. L Non- batt ey

aﬂ:&m.bw ex.@<s pownes Consmpl:/on Can /'nc,a_epue_
heodk dusipatwl - One woay b omake & Couume lessy

Power. 1 T nun sﬁwej » but Slowuﬁ down_
MS To ‘YYU..SSU‘Ij Adead lines /ILM ove. 62"911,2!'“_4
design must be deowe o meek FM(SOZM jo& '
(d) Desan fr Upgradapdds ‘(Howodo we
upaﬂa.al_e_g n .éofl:v\)m < arothey CJ‘-A'LL%Q .
iffenent Veasiens o Mo Bof brozne
S W . (Does & Mﬂz} wmksj

crne Safeby- caidical }»WLMJ:_\, -4 Hase f}prmo[ucffs

Dack W then, “lhe &:n.SeiMéAcas can. be_
=l enswe A llablily D oL&Sth-ﬂ ey B

eal time system is defined as a system in which job has deadline, job has to finished by the
deadline (strictly finished). If a result is delayed, huge loss may happen.

1. Hard Real Time System :

Hard real time is a system whose operation is incorrect whose result is not produce according to
time constraint.

For example,

1. Air Traffic Control
2. Medical System

2. Soft Real Time System :

Soft real time system is a system whose operation is degrade if results are not produce according
to the specified timing requirement.

For example<

1. Multimedia Transmission and Reception

2. Computer Games

Difference between Hard real time and Soft real time system :

HARD REAL TIME SYSTEM SOFT REAL TIME SYSTEM
In hard real time system, the size of In soft real time system, the size of data file is
data file is small or medium. large.

In this system response time is in

millisecond. In this system response time are higher.
Peak load performance should be In soft real time system, peak load can be
predictable. tolerated.

In this system safety is critical. In this system safety is not critical.

HARD REAL TIME SYSTEM

A hard real time system is very
restrictive.

In case of an error in a hard real time
system, the computation is rolled
back.

Satellite launch, Railway signaling
system etc.

SOFT REAL TIME SYSTEM

A Soft real time system is less restrictive.

In case of an soft real time system, computation
is rolled back to previously established a
checkpoint.

DVD player, telephone switches, electronic
games etc.

EMeeDpep Systen Desigl Processes : w

ﬂw Ma:!bﬁ\, ghf;_s i dhe a(u_cﬁrb process ane SWﬂMO\,CHiuA
Mm Lop dowon. v as follows .

'Tor)c{oun @\ Bottom- o

clesign deslan

‘Fta M“d"l’ levels of aJor-tuaz,twr\. an The c(.cstg-n
RequuYe_menﬁ ' S Phoca_ss]

;7\‘ ’ﬂx.e, miumamzenf Pamse, 0:5 e dg,ggn process
C@%w ‘hak to desgn” |
—>J.«xsgv rmal oluwfewq 3mtuml feary Capeomos U
Knororv a$ ﬁ/%wneme/\.t
> Regulrement can be of 2 tpes @
(@) Funckioneld neguinements
; (b)) Non - ;Mtom} Aeguirnerents
;e S ag’- e non - ‘f'u.Ml:tO*Lal Miwnem,e/d: asng

@ ?:wm Comumfbe-wﬂ_ N

—>/rn_ po vy M@W}LW 5@&56 Powc,q can be Qfea_é'lec

ud:wms 7\ ba,ttzylﬁ Lﬁc

AC}H?'\-&L Ei{ the. casbomen |

&('\’) (Ph;.r'-‘;c‘(.t 8?7{0 \.1'\([7\)(7"‘"]'('2' ‘

<8 'D«_-’:c.m;lif:ej on e .:Li)[xQ{c:Ll:}o/L . [‘9'»5&3@*1—
Size and wetgt ef the -bﬂ—?om,d System. Can Vaosu
a Lot
= 4§ D c\ff&ad:c‘m_ anvebies o Randheld dosice
e Bore ane consbocimnt o both. e 9z a.lwt
-we,%h,t Q. o dovice . Howeves , k@ an
hdusbial conlsnol Spote Mhon Mot 44 no lonshs
aink on e Sze and weight
(3 Pertformance
> Fhe Coil amd. r,ua,b% of The Sbcstém, ame_
ez%cd;act Ay Yo uy 3}>eccl‘ The [:Méovmm melbajes can
. ke Combinatio) g Sqt metnics and Rayd matates
() Cosk - .
> fe Systemi punchase paice on the tangel Gl
A5 Very Important - Conplele Cosl on Srply Cad
ncludes T Pollowong two Componenk
2) /"{W;Sad:mmj cosk ‘
B NrRe (Non. - Fecwme,:j Engricening) Cogl .

P Memugackusing cock lo the Cosk o Me Componant
: NRE tosts ame the cook o pu.ou_r:? /De:L.sonne.Q amc4
0thon dasgn velated Cosbs .

l
’—=> &Zune/mml Vallidatio) nequwones pl\ﬁcﬁﬁ&dxmﬁ
sillls as & dleals woue umﬁmsbwbg what Cusbome

&)
.-/H"" Jhe Syslem, Tegunemont ;, e Uses; mﬂ,o,znge. P

Can Le clone b_"‘j C_’Yéfutl':j qMouK*U—F” :
P ordin o il funchionality wn o nesbuils

% du_wbod(—uf Make Use oﬁ Sesnioedd ala.b:\ !

ﬁ%mmuf mnbawaﬁ_n&ba pc ©
WoRK - 2lokion |

'E&LW -form /Qa_@ui’mmud, chank

- The reiufyme/\i forw /cﬂ«\mt acks Leke a cheex by

M)Amm}mgjedrlg . anikial Gk ; Jrsa/m)o&

/\/ovme :

Propose @ Cuwbak the Syckem 9 se ts do
Frnctions ! S C-’func,buonal;éi 3 U\L53542’VL)
‘Pmboﬁv\.ana- o Sy »

MMW’S&S" L JP—

(Powe)z, I

(PA,UQCAJ Sxdwt

ﬁﬁ ; w Re@uvw <form .
Name - /\/ame_ neot on@. deseoube HRa pustpose 2
He moaching | bk also Ra,n.fwa whe . cam,yut,,,j
P\""‘& Tha showdd Le « baef One o4 Tiyo Leno

1

d‘asc’“fPéw’l of- what tha Systent 12 suf,oo_ceJ -

Taputs and Ol ¢ i td Aopitnes anformati
abounlt 'fajf& 9 Ifp devices dakta chorackens by cs anel

%Pf-d—fj-cia.ta_.

Fobins © A debotled descafpli about P

Eoma_lil;j G the mMmachioe th
freld .
?M#W : j:ﬂora!.er 't, d»ﬂ"—'*bt?l-z- PMF'// -%Mtonallt

Rand and Aoy must be rmeasuved Carelully
P}'ﬁfa!mi $za and Mﬁqkt " nerdes to kake anchl
'll,ec,{tma_j_ d.aazstofl;; y Aho a—PPMDumatb Pzﬁ?d StZe Cf,
weeght of T Q(js#em B rporkant |
(Pf?weflf . The :’wuﬁgu wlon. abort porea c:pn.s_z.um,p‘ﬂm'
Can be VWery Relpful . Decision about whethan AP
S:tj_c,fenm 1 ba.ttewy bQSea' or non- baﬁ:uj 18 Im'porEq,d:
Rene .

tSPEacha T{or\!,s

—)gfuub—ccjd_—lm_g Sespves as The Cormtract bebweos
bhe customen and the a_rcfdﬁegf,

= The Slbwﬁwﬂ,bmns st I& Chﬂ"—ér.d/y wodben d.-"g
Rot ac.c_u.s'-zad:e.[_«_’: '?"é’-flfec,{'é e Customens JPQZchS’Le,—
= The Slouc&tcaf!on should be Undes stamtly Crwu.j!_ S0
Bat Smeone G Verdy Rab & meets 56‘5"”@
'{e@ui’wwwf amd oma,ll 9 ez.}ozd;_bfcyz_c ;27 B
Cusborney . o
2> The ‘C“fm’zf?w"”! o ew GPs 835227& Moy nclue
e foﬂiom"ig

¢ Dadon 2wecoivecl .gmm e &ps Satedlite Lonstetlal
- Ma.f: cdata
° WSea. ulte/r-fa.a,

° QPMW Lhaok musk de P%ormd g -E.a:!;.t.sﬁ-j
Cusbormer Tequivemends

LIFE CYCLE MANAGEMENT
WATER FALL MODEL

» The Waterfall Model was the first Process Model to be introduced. It is also referred to as
a linear-sequential life cycle model. It is very simple to understand and use. In a
waterfall model, each phase must be completed before the next phase can begin and there
is no overlapping in the phases.

* The Waterfall model is the earliest SDLC approach that was used for software
development.

» The waterfall Model illustrates the software development process in a linear sequential
flow. This means that any phase in the development process begins only if the previous
phase is complete. In this waterfall model, the phases do not overlap.

» Waterfall approach was first SDLC Model to be used widely in Software Engineering to
ensure success of the project.

* In "The Waterfall" approach, the whole process of software development is divided into
separate phases.

* In this Waterfall model, typically, the outcome of one phase acts as the input for the next
phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

Requirement
Analysis Waterfall Model
System
Design
[Implementation }
[Deployment]

[Maintenance]

* Requirement Gathering and analysis — All possible requirements of the system to be
developed are captured in this phase and documented in a requirement specification
document.

The sequential phases in Waterfall model are

» System Design — The requirement specifications from first phase are studied in this
phase and the system design is prepared. This system design helps in specifying hardware
and system requirements and helps in defining the overall system architecture.

* Implementation — With inputs from the system design, the system is first developed in
small programs called units, which are integrated in the next phase. Each unit is
developed and tested for its functionality, which is referred to as Unit Testing.

Integration and Testing — All the units developed in the implementation phase are
integrated into a system after testing of each unit. Post integration the entire system is
tested for any faults and failures.

» Deployment of system — Once the functional and non-functional testing is done; the
product is deployed in the customer environment or released into the market.

* Maintenance — There are some issues which come up in the client environment. To fix
those issues, patches are released. Also to enhance the product some better versions are
released. Maintenance is done to deliver these changes in the customer environment.

» All these phases are cascaded to each other in which progress is seen as flowing steadily
downwards (like a waterfall) through the phases.

» The next phase is started only after the defined set of goals are achieved for previous
phase and it is signed off, so the name "Waterfall Model".

* In this model, phases do not overlap.
Waterfall Model — Advantages
» Simple and easy to understand and use

» Easy to manage due to the rigidity of the model. Each phase has specific deliverables and
a review process.

» Phases are processed and completed one at a time.
» Works well for smaller projects where requirements are very well understood.
» Clearly defined stages.
» Well understood milestones.
« Easy to arrange tasks.
* Process and results are well documented.
Waterfall Model — Disadvantages
* No working software is produced until late during the life cycle.
« High amounts of risk and uncertainty.
* Not a good model for complex and object-oriented projects.

» Poor model for long and ongoing projects.

» Not suitable for the projects where requirements are at a moderate to high risk of
changing. So, risk and uncertainty is high with this process model.

« Itis difficult to measure progress within stages.
+ Cannot accommodate changing requirements.

» Adjusting scope during the life cycle can end a project.

» Integration is done as a "big-bang. at the very end, which doesn't allow identifying any
technological or business bottleneck or challenges early.

Borw bube A0 N -

ot maind) |
b, e
L L T
O LU Ty T
R L
Pt e N),

High Level

Language

- w—— o —————
START LA O
L B
DA
MO -
Al
L
e
LA NN e
A A
LLLY L
Shaw -

Assembly
anguage

Executable
Binary file

0010 G001 000 0100
0001 G001 0000 0101
0011 00O) 0000 0110
0111 0000 G000 G001
0000 G000 0101 M1
TR TRNE A e

Source
Program 1

Source
Program 2

Source
Program N

Compiler /
Assembler

Compiler /
Assembler

Object
Program 2

Compiler /
Assembler

Linker
Loader
Object
Program N l

Executabl@’]
Programti

common methods used for debugging

i - W a : - e
d & 11l
DREUIENTE T I N

Salient Features of 8051:
1) A Microcontroller is a complete computer system built on a single chip.

2) It contains all components like Processor (CPU), RAM, ROM, Serial port, Parallel port,
Interrupt logic, Timers etc.. on chip.

3) A Microcontroller saves cost, saves power consumption and makes the circult compact.

4) Microcontrollers are ideally suited for appliances like remote controllers, refrigerators,
microwave ovens, modems etc.

5) 8051 is an 8-bit Microcontroller, it has an 8 bit ALU. This means all arithmetic and logic
operations are of 8 bits.

6) 8051 has an 8-bit data bus, so all external Data Transfers wlll be of 8-bits Iin one cycle.
7) It has internal ROM of 4KB used for storing programs.
8) It has internal RAM of 128 bytes used for storing data.

9) Since program memory (ROM) and data memory (RAM) are separate, 8051 follows

Harvard Model. In contrast, Processors based on Von Neumann Model store programs and data

in a common memory space.

10) There are 4, 8bit, bidirectional I/O ports for interfacing external devices like keyboards,
displays etc. These ports can also be used for their alternate functions like multiplexed
address data buses and control signals.

11) It has a serial port for long distance communication.
The serial port can perform synchronous and asynchronous transfers.

12) 8051 has two, 16bit Timers, which act as 'up’ counters.
They are used to produce hardware delays and for counting external events.

13) There are 5 interrupts, operating at two priority levels.
14) 8051 has two power saving modes called “Idle mode” and “"Power Down mode”.

15) In addition to internal memory, up to 64 KB of external RAM and External ROM can be
connected, as per user requirement. The figure 64 KB is due to the 16-bit address bus.

16) 8051 is a 40-pin IC and typically operates at 12 MHz frequency.

Scanned by CamScanner

<"|—_—'_I> P0.0 - P0.7/AD; -
XTAL, ke

XTAL, (> PLO- PLT
Reset ——»
<:> P20 -P2.7/ Ajs=Ag

——> 3.0- P37

Alternate Functions of Port 3

ALE
PSEN ¢

P30 f—— R
P3.1 > T);D }Seﬁalpart

2|
_ U1 O 00

P3.2 [&— INT, }.'ntenugts
P33 le— N1,
P34 f—— T }
Ve ——» o3t T Timer Inputs
Vss —_— N
P36 [—> WR Control Signals

e -

P37 b— RD

Scanned by CamScanner

8051 has 40 pins.
The function of these pins is briefly explained as follows,

These are connected to the crystal oscillator.

The typical operating frequency is 12 MHz.

In Serial communication based applications, the operating frequency Is
chosen to be 11.0592 MHz, In order to derive the standard unlversal baud
rates. This will be discussed in detail in the further chapters.

It is used to reset the 8051 microcantraller.

On reset PC becames 0000H.

This address is called the reset vector address.

From here, 8051 executes the BIOS program also called the Booting

program or the monitor program. It Is used to set-up the system and make
it ready, to be used by the end-user.

It is used to enable the latching of the address.

The address and data buses are multiplexed.

This is done to reduce the number of pins on the 8051 IC.

Once out of the chlp, address and data have to be separated that s called
de-multiplexing.

This Is done by a latch, with the help of ALE signal.

ALE is "1" when the bus carries address and "0” when the bus carries data.

This informs the latch, when the bus Is carrying address so that the latch captures only address and
not the data.

It decides whether the first 4 KB of program memory space (0000H... OFFFH)
will be assigned to internal ROM or External ROM.

If EA = 0, the External ROM begins from 0000H.

In this case the Internal ROM is discarded.
8051 now uses anly External ROM.

If EA = 1, the External ROM begins from 1000H.

In this case the Internal ROM is used. It occupies the space 0000H... OFFFH.

In modern FLASH ROM versions, this pin also acts as VPP (12 Volt programming voltage) to write
into the FLASH ROM.

Scanned by CamScanner

8051 has a 16-bit address bus (Ais — Ap).
This should allow 8051 to access 64 KB of external Memory as 2'° = 64 KB.

Interestingly though, 8051 can access 64 KB of External ROM and 64 KB
of External RAM, making a total of 128 KB.

Both have the same address range 0000H to FFFFH.

This does not |lead to any confusion because there are separate control signals
for External RAM and External ROM.

RD and WR are control signals for External RAM.

PSEN is the READ signal for External ROM.

It is called Program Status Enable as it allows reading from ROM also known as Program Memory.
Having separate control signals for External RAM and External ROM actually allows us to double
the size of the external memory to a total of 128 KB from the original 64 KB.

These are power supply pins.
8051 works at +5V / OV power supply.

These are 8 pins of Port 0.
We can perform a byte operation (8-bit) on the whole port 0.
We can also access every bit of port 0 individually by performing bit

operations like set, clear, complement etc.
The bits are called P0.0... PO.7.

Additionally, Port 0 also has an alternate function.
It carries the multiplexed address data lines.

A0-A7 (the lower 8 bits of address) and DO-D7 (8 bits of data) are multiplexed into ADO-AD7.
In any operation address and data are not issued simultaneously.

First, address is given, then data Is transferred.

Using a common bus for both, reduces the number of pins.

To identify if the bus is carrying address or data, we look at the ALE signal.
If ALE = 1, the bus carries address,

If ALE = 0, the bus carries data.

These are 8 pins of Port 1.

We can perform a byte operation (8-bit) on the whole port 1.

We can also access every bit of port 1 individually by performing bit
operations like set, clear, complement etc, on P1.0... P1.7.

Port 1 also has NO alternate function.

Scanned by CamScanner

These are 8 pins of Port 2.

We can perform a byte operation (8-bit) on the whole port 2.

We can also access every bit of port 2 individually by performing bit
operations like set, clear, complement etc. on P2.0... P2.7.
Additionally, Port 2 also has an alternate function.

It carries the higher order address lines A8-A15.

These are 8 pins of Port 3.

We can perform a byte operation (8-bit) on the whole port 3.
We can also access every bit of port 3 individually.
The bits are called P0.0... P0.7.

The various pins of Port 3 have a lot of alternate functions.

P3.0 (Rxd) and P3.1 (Txd): They are used to receive and transmit serial data.
This forms the serial port of 8051.

P3.2 (INTO) and P3.3 (INT1): They are external hardware interrupts of 8051.
If they occur simultaneously, INTO is by default higher priority.

P3.4 (TO) and P3.5 (T1): They are used timer clock inputs.
They provide external clock inputs to Timer 0 and Timer 1.

P3.6 (WR) and P3.7 (RD): They are used as control signals for External RAM.
8051 can access 64 KB External RAM from 0000H to FFFFH..

Scanned by CamScanner

8051 BLOCK DIAGRAM

Arithmetic Special- & o Vo
and PSW Function % e
Logic Unit Registers — D0-D7
RAM =
A 8 B-Bit Dataand
Address Bus £ ol I
= — |/0
1 3 5
DPTR
PC DPH ROM -
3 £ [asats
16-Bit Adress Bus -
v — 10
— \ pecial- m = Interrupt
;j_t] Sptem Addresses ;""Fhm § ¥ [~ Counter
PSEN — Timing egisiers — Serial Data
XTALl —| System Register - | B
XTAL2 —{ !merrupts Bank 3 P
RESET — Timers PCON I
Dala Buffers . SBUF |
Vee — Register
END — Memaory Control Bank 2 SCON '
[TCON |
' Register T™MOD |
Bank | TLO l
I THO :
l Register Ll
nk
| Bark 0 -]
l. Internal RAM Structure :
|
h———-———-——--————-—--;

Scanned by CamScanner

External
Intermupts

R

Interrupt
Control

4k
ROM

128
RAM

ALTERNATE DIAGRAM FOR 8051 ARCHITECTURE / BLOoCK DIAGRAM

Timar 1

T\

|

1L

Bus

Four 11O Pons

- Countor
Timer 0 i Inpvts
Serial
Pont

17y

Address/Data

Scanned by CamScanner

8051 Is a microcontroller. This means it has an internal processor, internal memeory and an 1/0
section. The architecture of 8051 is thus divided into three main sections:

= The CPU

« Internal Memory

» /O components.

8051 has an 8 bit CPU.
This is where all 8-bot arithmetic and logic operations are performed.
It has the following components.

It performs 8-bit arithmetic and logic operations.
It can also perform some bit operations.

Example;

ADD A, RO : Adds contents of A register and RO register and stores the result in A register.

ANL A, RO : Logically ANDs contents of A register and RO register and stores the result in A register.
CPL PO.O ; Complements the value of PO.0 pin.

A — REGISTER (ACCUMULATOR)

It is an 8-bit register.

In most arithmetic and logic operations, A register hold the first operand and also gets the
result of the operation.

Moreover, it Is the only register to be used for data transfers to and from external memory.

Example:
ADD A, R1 : Adds contents of A register and R1 register and stores the result in A register.

MOVX A, @DPTR : A gets the data from External RAM location pointed by DPTR

B — REGISTER

It Is an 8-bit register.
It Is dedicated for Multiplication and Division,
It can also be used in other operations.

Example:
MUL AB : Multiplies contents of A and B registers, Stores 16-bit result in B and A registers.
DIV AB : Divides contents of A by those of B. Stores quotient in A and remainder in B.

Scanned by CamScanner

PC — PRoGRAM COUNTER

It is an 16-bit register.

It holds address of the next instruction in program memory (ROM).

PC gets automatically incremented as soon as any instruction is fetched.
That's what makes the program move ahead in a sequential manner.

In the case of a branch, a new address is loaded into PC.

DPTR — DATA POINTER

It is an 16-bit register.

It holds address data in data memory (RAM).

DPTR is divided Into two registers DPH (higher byte) and DPL (lower byte).

It is typically used by the programmer to transfer data from External RAM.

It can also be used as a pointer to a look up table in ROM, using Indexed addressing mode.

Example:
MOVX A, @DPTR : A gets the data from External RAM location pointed by DPTR

MOVC A, @A+DPTR ; A gets the data from ROM location pointed by A + DPTR

SP - Stack POINTER

It is an 8-bit register.

It contains address of the top of stack.

The Stack is present in the Internal RAM.

Internal RAM has 8-bit addresses from 00H... 7FH.
Hence SP is an 8-bit register.

It Is affected during Push and Pop operations.
During a Push, SP gets incremented.

During a Pop, SP gets decremented.

PSW - ProGgrAM STATUS WORD

It is an 8-bit register.

It is also called the “Flag register”, as It mainly contains the status flags.

These flags indicate status of the current result.

They are changed by the ALU after every arithmetic or logic operation.

The flags can also be changed by the programmer.

PSW is a bit addressable register.

Each bit can be Individually set or reset by the programmer.

The bits can be referred to by their bit numbers (PSW.4) or by their name (RS1).

Example:
SETB PSW.3 ; Makes PSW.3 €1
CLR PSW.4 ; Makes PSW.4 €0

Scanned by CamScanner

FLAG REGISTER (PSW) oF 8051

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

ey AC FO RS1 RSO | OVR - P
\ i
'
Carry Flag User Defined Fla Overflow Flag Parity Flag
1= Carry Out of MSB | Set by using SETB PSW.5 1= Signed Overflow occurred 1 = Odd Parity
0 = Mo such Carry Cleared by using CLR PSW.5 0 = No Signed Overflow 0 = Even Parity
It is determined by C- X-OR C:
Imp: Please refer Bharat Sir's
Class notes for examples on
v ‘ Overflow Flag {VIVA Question}
Auxiliary Carry Fla Register Bank Select
1 = Carry from Lower Nibble 00 --- Register Bank 0 {default}
to Higher Nibble 01 --- Register Bank 1
0 = No such Carry 10 --- Register Bank 2

11 --- Register Bank 3

RS1 RSO REGISTER BANK | RAM ADDRESS | SELECTED BY INSTRUCTIONS
0 0 Bank 0 00H ... 07H CLR PSW.4, CLR PSW.3
0 1 Bank 1 08H ... OFH CLR PSW.4, SETB PSW.3
1 0 Bank 2 10H ... 17H SETB PSW.4, CLR PSW.3
1 1 Bank 3 18H ... 1FH SETB PSW.4, SETB PSW.3

Scanned by CamScanner

8051 has two forms of internal memories.
It has 128 bytes of Internal RAM and 4 KB of Internal ROM.

INTERNAL RAM

8051 has 128 bytes of Internal RAM.

RAM is used to store data, hence is also called Data Memory.

The are 128 locations each containing one byte information.

The address range is 00H... 7FH.

It contains Register banks, a Bit addressable area and a General purpose area.

INTERNAL ROM

8051 has 4 KB of Internal ROM.

ROM is used to store programs, hence is also called Program Memory or Code Memory.
The are 4 K locations each containing one byte information.

The address range is 0000H... OFFFH.

It mainly contains programs.

It may also contains some permanent data stored in the form of look up tables.

To access programs, the address Is given by PC - Program Counter.

To access data, the address is glven by DPTR - Data Pointer.

Like any other typical microcontroller, 8051 has several I/O components.
They include 1/0 ports, Timers, Serial port etc.

8051 has 4, 8-bit I/0 ports: PO, P1, P2 and P3.

They support bit and byte operations.

They also have several alternate functions.

There are two 16-bit timers, which operate as down counters.

There Is a serial port having pins Rxd and Txd to receive and transmit data serially.

There are two external interrupt pins.

Additionally there are address, data and control signals for transfers with External RAM and
External ROM.

Finally, 8051 has 21, 8-bit internal SFRs (Special Function Reglsters).
These are used to control operations of the various I/O components mentioned above.

Scanned by CamScanner

FLAG REGISTER (PSW) oF 8051

PSW.7 PSW.6 PSW.5 PSW.4

PSW.3 PSW.2 PSW.1 PSW.0

CY AC FO RS1 | RSO | OVR . o
\ J
Y
Carry Flag User Defined Flag Overflow Flag Parity Flag
1 = Carry Out of MSB | Set by using SETB PSW.5 1 = Signed Overflow occurred 1 = Odd Parity
0 = No such Carry Cleared by using CLR PSW.5 0 = No Signed Overflow 0 = Even Parity

Y

Auxiliary Carry Flag
1 = Carry from Lower Nibble

to Higher Nibble

0 = No such Carry

A

r

Itis determined by C- X-OR Cs
Imp: Please refer Bharat Sir’s
Class notes for examples on
Overflow Flag {VIVA Question}

Register Bank Select
00 --- Reqister Bank 0 {default}

01 --- RegisterBank 1

10 --- RegisterBank 2

11 --- RegisterBank 3

Scanned by CamScanner

PSW - ProGraM StAaTUS WORD

It is an 8-bit register.

It is also called the “Flag register”, as it mainly contains the status flags.

These flags indicate status of the current result,

They are changed by the ALU after every arithmetic or logic operation.

The flags can also be changed by the programmer.

PSW Is a bit addressable register.

Each bit can be Iindividually set or reset by the programmer.

The bits can be referred to by their bit numbers (PSW.4) or by their name (RS1).

CY - CARRY FLAG
It indicates the carry out of the MSB, after any arithmetic operation.

If CY = 1 : There was a carry out of the MSB
If CY = 0 : There was no carry out of the MSB

AC — AuxiLIARY CARRY FLAG

It indicates the carry from lower nibble (4-bits) to higher nibble.
If the 8bits are numbered Bit 7 --- Bit 0, this is the carry from Bit 3 to Bit 4.

If AC = 1 : There was an auxiliary carry
If AC = 0 : There was no auxiliary carry

Note: It is particularly useful in an operation called DA A (Decimal Adjust after Addition).

OVR - OVERFLOW FLAG

It indicates if there was an overflow during a signed operation.
An 8-bit signed number has the range -80H... O0H... +7FH.
Any result, out of this range causes an overflow.

If OVR = 1 : There was an overflow In the result
If OVR = 0 : There was no overflow In the result

Overflow Is determined by dolng an Ex-Or between the 2" last carry (Cg) and the last carry (C5)

Note: After an overflow, the Sign (MSB) of the result becomes wrong.

P - PARITY FLAG

It indicates the Parity of the result.
Parity is determined by the number of 1's in the result.

If PF = 1 : The result has ODD parity
If PF = 0 : The result has EVEN parity

Scanned by CamScanner

FO - User DEFINED FLAG

This flag is available to the programmer.

It can be used by us to store any user defined information.

For example: In an Alr Conditioning unit, programmer can use this flag Indicate whether the
compressor Is ON or OFF (1 or 0).

This flag can be changed by simple Instructions like SETB and CLR.

SETB PSW.5; This makes FO bit €« 1
CLR PSW.5; This makes FO bit &« 0

RS1, RSO — REGISTER BANK SELECT

The initial 32 locations (bytes) of the Internal RAM are available to the programmer as registers.
Having so many registers makes programming easler and faster.

Naming RO... R31, would tremendously increase the number of opcodes.

Hence the registers are divided into 4 banks: Bank0... Bank3.

Each bank has 8 registers named RO... R7.

At a time, only of the four banks is the “active bank”.

RS1 and RSO are used by the programmer to select the active bank.

RS1 RSO REGISTER BANK SELECTED BY INSTRUCTIONS
o0 | oo T
0 1 Bank 1 i peu =
Lo | e seTo s
Co | e sera o

Scanned by CamScanner

MEMORY ORGANIZATION
OF 8051

8051 operates with 4 different memories:

Internal ROM
External ROM

Internal RAM
External RAM

Being based on Harvard Model, 8051 stores programs and data in separate memory spaces.
Programs are stored in ROM, whereas data is stored in RAM,

Microcontrollers are used in appliances.

Washing machines, remote controllers, microwave ovens are some of the examples.

Here programs are generally permanent in nature and very rarely need to be modified.
Moreover, the programs must be retained even after the device is completely switched off.
Hence programs are stored in permanent (non-volatile) memory like ROM,

Data on the other hand is continuously changed at runtime.

For example current temperature, cooking time etc, in an oven.

Such data is not permanent in nature and will certainly be modified in every usage of the device.
Hence Data is stored in writeable memory like RAM.

However, sometimes there is permanent data, such as ASCII codes or 7-segment display codes.
Such data Is stored in ROM, In the form of Look up tables and Is accessed using a dedicated
addressing mode called Indexed Addressing mode. We will discover this in mare depth in further
topics.

We are now going to take a closer look at all four memories.

Scanned by CamScanner

ROM ORGANIZATION / CODE MEMORY / PROGRAM MEMORY

1) Only Internal 2) Internal and External 3) Only External
?A- - 1 a = 1 ﬁ - D
0000 H 0000 H 0000 H
Internal Internal
ROM ROM
4KB 4KB
OFFF H OFFF H
1000 H External
ROM
(Max = 64KB)
External
ROM
(Max = 60KB)
FFFF H FFFF H

Scanned by CamScanner

We can implement ROM in three different ways in 8051.

ONLY INTERNAL ROM

8051 has 4 KB internal ROM.
In many cases this size is sufficient and there Is no need for connecting External ROM.

Such systems use only Internal ROM of 8051.
All addresses from 0000H... OFFFH will be accessed from Internal ROM,

Any address beyond that will be invalid.
In such systems EA will be "1” as Internal ROM Is being used.

(PS: Read the whole answer to understand EA clearly)

INTERNAL AND EXTERNAL ROM

8051 has 4 KB internal ROM.
In many cases this size Is may be insufficient and we may need to add some External ROM.

Such systems use a combination of Internal ROM and External ROM.

The “total” ROM that can be accessed is 64 KB.
Since we are using the Internal ROM of 4 KB, the maximum amount of External ROM that can be

connected is 60 KB.
All addresses from 0000H... OFFFH will be accessed from Internal ROM,
Addresses 1000H... FFFH will be accessed from External ROM.

In such systems EA will be *1” as Internal ROM is being used.

(PS: Read the whole answer to understand EA clearly)

ONLY EXTERNAL ROM

This is the most interesting case.
Though 8051 has 4 KB of Internal ROM, the user may choose the discard it and connect only

External ROM.

This may happen due to several reasons.

The program stored in the Internal ROM may have become invalid or outdated, or the system may
need to be upgraded etc.

Such systems use only External ROM, and the Internal ROM is discarded.

Here we can connect up to 64 KB of External ROM.

All addresses from 0000H... FFFFH will be accessed from External ROM,

But do keep in mind, that the Internal ROM is still present in 8051.

We need to clearly indicate to 8051 that the Internal ROM must be ignored and every address from

0000H... FFFFH must be accessed externally. This is indicated by us to 8051 using EA .

By making "EA = 0, we inform 8051 that the Internal ROM must be discarded and all ROM must be
accessed externally.

Scanned by CamScanner

Note: Use of EA pin of 8051.

The EA pin of 8051 decides whether the Internal ROM will be used or not.

If the Internal ROM has to be used we must make EA = 1,

Now 8051 will Access the internal ROM for all addresses from 0000H to OFFFH and will only access
external ROM for addresses 1000H and beyond.

But If EA = 0, then the Internal ROM is completely discarded.
Now 8051 will access the External ROM for all addresses from 0000H to FFFFH, hence discarding the

internal ROM.

8051 checks EA pin during every ROM operation where the address is 0000H... OFFFH.
If EA = 1, this location is accessed from internal ROM.

If EA = 0, this location Is accessed from external ROM.

If the address is 1000H or more, 8051 does not check EA as this location can only be present in
External ROM.

Scanned by CamScanner

Nz

SpPecIAL Function REGISTERS (SFRs) oF 8051

8051 has 21, 8-bit Special Function registers.

Used for holding data and
status during Programming

1

Used in instructions to
point to memory

Used by the respective

1/0 Ports

Used by the Serial Port

Used for Timer Control

Used for Interrupt
Control

U S SR G W &

Used for Power Control

NAME FUNCTION BYTE ADDRESS BIT ADDRESS
A Accumulator 0EQH QE7H...0EO0H
B Arithmetic OFOH OF7H...0FOH
PSW’ Program Status Word 0DOH 0D7H...0DOH
SP Stack Pointer 81H NA
DPL Address External Memory 82H NA
DPH Address External Memory 83H NA
PO" 1/0 Port latch 80H 87H...80H
P1” I/0O Port latch 90H 97H...90H
p2° I/0 Port latch 0AOQH 0OA7H...0A0H
P3" 1/0 Port latch 0BOH 0B7H...0BOH
SCON" | Serial Port Control 98H 9FH...98H
SBUF Serial Port Data Buffer 99H NA
TCON" | Timer/Counter Control 88H 8FH...88H
TMOD Timer/Counter Mode Control 89H NA
TLO Timer 0 Low Byte 8AH NA
TL1 Timer 1 Low Byte 8BH NA
THO Timer 0 High Byte 8CH NA
TH1 Timer 1 High Byte 8DH NA
IE Interrupt Enable 0A8H OAFH...0A8H
1P’ Interrupt Priority 0B8H 0BFH...0B8H
PCON Power Control 87H NA

Means the SFR Is Bt Addressable

Scanned by CamScanner

1)

2)
3)

4)

5)

6)

7)

8)

9)

SFRs are 8-bit registers.

Each SFR has its own special function.

They are placed inside the Microcontroller. «ricase refer Bhamat sirs Lecturs Notes for this .

They are used by the programmer to perform special functions like controlling the timers, the
serial port, the I/O ports etc.

As SFRs are available to the programmer, we will use them in instructions.

This causes another problem.

SFRs are registers after all, and hence using them would tremendously increase the number of
opcodes. (Refer to Bharat Sir's Lecture notes for more on this)

To reduce the number of opcodes, SFRs are allotted addresses.

These addresses must not clash with any other addresses of the existing memories.
Incidentally, the internal RAM is of 128 bytes and uses addresses only from 0O0H... 7FH.

This gives an entire range of addresses from 80H... FFH completely unused and can be freely
allotted to the SFRs.

Hence SFRs are allotted addresses from 80H... FFH.

It is not a co-incidence that these addresses are free. It is how 8051 design was planned. The
Internal RAM was restricted to 128 bytes instead of 256 bytes so that these addresses are free
for SFRs.

Moreover, some SFRs are bit addressable, like Port 0.

All 8-bits can be individually accessed from PO0.0... P0.7, by instructions like SETB, CLR etc.

But again, this will again tremendously increase the number of opcodes.

To avoid this problem, even the bits of the SFRs are allotted addresses.

These are bit addresses, which are different from byte addresses.

These bit addresses must not clash with those of the bit addressable area of the Internal RAM.
Amazingly, even the bit addresses in the Internal RAM are 00H... 7FH (again 128 bits), keeping
bit addresses 80H... FFH free to be used by the SFR bits.

10) So bit addresses 80H... FFH are allotted to the bits of various SFRs.

(Watch Bharat Acharya Education, videos on YouTube for more on this)

11) Port 0 has a byte address of 80H and its bit addresses are from 80H... 87H.

A byte operation at address 80H will affect entire Port0.
E.g.:: MOV A, PQ; this refers to Byte address 80H that's whole Port 0.

12) A bit operation at 80H will affect only P0.0.

E.g.:: SETB P0.0; this refers to bit address 80H that's Port0.0

Scanned by CamScanner

ADDRESSING MobpEs oF 8051

Addressing Modes Is the manner in which operands are given in the instruction.
8051 supports the following 5 addressing modes:

1) IMMEDIATE ADDRESSING MODE

In this addressing mode, the Data is given in the Instruction itself.
We put a "#" symbol, before the data, to identify it as a data value and not as an address.

Eg: MOV A, #35H ;A € 35H

MOV DPTR, #3000H ; DPTR € 3000H

2) REGISTER ADDRESSING MODE

In this addressing mode, Data is given by a Register in the instruction.
The permitted registers are A, R7 ... RO of each memory bank.
Note: Data transfer between two RAM registers is not allowed.

Eg: MOV A, RO ;A € RO ... IfRO=25H, then A gets the Value 2511,
MOV R5, A [R5 € 4
MOV Rx, Ry « NOT ALLOWED. That's because this would allow 64 combinations of registers

: As registers invite opcodes, this would need 64 opcodes!

3) DIRECT ADDRESSING MODE

Here, the address of the operand is given in the instruction.
only Internal RAM addresses (0OH...7FH) and SFR addresses (from 80H to FFH) allowed.

Eg: MOV A, 35H : A € Contents of RAM location 35H
MOV A, 80H : A € Contents of Port 0) (SFR at address S0H)
MOV 20H, 30H ; [20H] € [30H]

- i.e. Location 20H gets the contents of Location 30H

Scanned by CamScanner

4) INDIRECT ADDRESSING MODE

Here, the address of the operand is given in a register.

Internal RAM and External RAM can be accessed using this mode,

The advantage of giving an address using a register is that we can increment the address in a
loop, by simply incrementing the register, and hence access a series of locations.

INTERNAL RAM: (8-BIT ADDRESS GIVEN BY RO orR R1)

ONLY R1 or RO, called as Data Pointers, can be used to specify address (00H ... 7FH).
An "@" sign is present before the register to indicate that the register is glving an address.

Eg: MOV A, @RO ;A € [RO]
;i.e. A € Contents of Internal RAM Location whose address is given by R0,
S if RO = 251, then A gets the contents of Location 25H from Internal RAM

MOV @R1, A ;[R1] € Aie Internal RAM Location pointed by R1 gets value of A.

ExTerRNAL RAM: (16 BIT ADDRESS GIVEN BY DPTR)

For the External RAM, address is provided by R1 or RO, or by DPTR.

If DPTR is used to give an address, then the full 64KB range of External RAM from 0000H...
FFFFH is available. This Is because DPTR is 16-bit and 2'° = 65536.

An "X" is present In the instruction, to indicate External RAM.

Eg: MOVX A, @DPTR ;A € [DPTR]"
: A gets the contents of External RAM Location whose address is given by DPTR

: If DPTR = 2000H, then A gets contents of Location 2000H from External RAM

MOVX @DPTR, A ; [DPTR]™ € A
sie. A is stored at the External RAM Lacation whose address is given by DPTR

EXTERNAL RAM: (8 BIT ADDRESS GIVEN BY RO oR R1)

If RO or R1 Is used to give an address, then only the first 256 locations of External RAM is
available from 0000 H to OOFF H. This is because RO or R1 are 8-bit and 2% = only 256.

Eg: MOVX A, @RO ;A € [ROJN _
s i.e. A gets the contents of External RAM Location whose address is given hy RO

: If RO = 25H, then A gets contents of Location 0025H from the External RAM

MOVX @R1, A J[RI] € A _
- i.e. A is stored at the External RAM Location whose address is given by R!

Scanned by CamScanner

5) INDEXED ADDRESSING MODE

This mode is used to access data from the Code memory (Internal ROM or External ROM).

In this addressing mode, address is indirectly specified as a "SUM" of (A and DPTR) or (A and
PC).

This is very useful because ROM contains permanent data which is stored in the form of Look Up
tables. To access a Look Up table, address is given as a SUM or two registers, where one acts as
the base and the other acts as the index within the table,

A "C" is present In such Instructions, to indicate Code Memory.

Eg: MOVC A, @A+DPTR ;A € Contents of a ROM Location pointed by A+DPTR.
JIDPTR = 0400H and A = 05H,
; then A gets the contents of ROM Location whose address is 0405 H.

MOVC A, @A+PC + A € Contents of « ROM Location pointed by A+PC.

The same instruction may operate on Internal or External ROM, depending upon the address and
on the value of EA pin of 8051,

If the address is In the range of 0000... OFFFH, then EA pin will decide if it operates on Internal

ROM or External ROM. IF EA = 0, External ROM else Internal ROM.
If Address Is 1000H and more, it will certainly be External ROM.

External Addressing using MOVX and MOVC

I 8051 1
I }
| Read t Write | Read # Write Read t
I
| A Register : Data Data
' |
: | MOVX @ Rp

ROOrR1 ey External internal
| I RAM ang
' | “Rom
: PTR | MOVX @ DPTR
| |
| DPTR + A l NVCA. @A « DFTR -
| |
'i PC « A { MOVCA @A+ PC T

I -

L

Scanned by CamScanner

Opcode (#n) Next Byte(s) Source Only

Instruction Data

Iimmediate Addressing Mode

Opcode (Ri)
Instruction Source
Or
Destination
RO-R7
Data
Register Addressing Mode
Opcode (Add)
Instruction Source
Or
Destination
Address In Ram
Data
Direct Addressing Mode
Opcode (@Rp)
! Source
Or
Destination
Address In Ram ROOrR1 S
Data Address
Indirect Addressing Mode

Scanned by CamScanner

th Borrow

Scanned by CamScanner

=
1) ADD A, #n | “Add"

Example:
ADD A, #25H; A € A + 25H

Operation:

Adds A Register with Immediate data.
Stores the result in A Register.,

No of cycles required: 1
IMPORTANT TIP FROM BHARAT ACHARYA
Please do remember to check for carry after performing addition.
Carry flag is checked by instructions like JC and JNC.

2) ADD A, Rr | “Add®

Example:
ADD A, RO; A € A + RO

Operation:

Adds A Register with the value of a RAM register.
Stores the result in A Register.,

No of cycles required: 1

3) ADD A, addr “Add”
Example:
ADD A, 25H; A € A + [25H]

Operation:

Adds A Register with the contents af the address.
Stores the result in A Register.

No of cycles required: 1

4) ADD A; @Rp | “Add”

Example:
ADD A, @RO; A € A + [RO]

Operation:

Adds A Register with the contents of the location pointed by the register.
Result is stored in A Register.

If RO = 20H and Location 20H contains value 35H, then 35H will be added to A register.

No of cycles required: 1

Scanned by CamScanner

5) ADDC A, #n | *Add with carry™

Example:
ADDC A, #25H; A € A + 25H + Carry Flag

Operation:
Adds A Register with Immediate data along with the Carry of the previous addition which is present in the Carry Flag,
Stores the result in A Register.

No of cycles required: 1
IMPORTANT TIP FROM BHARAT ACHARYA

ADDC is used when we want to ADD two large numbers like 16 bit numbers.
First we add the lower bytes using ADD instruction.

Then we add the higher bytes using ADDC instruction,

If the Lower byte has produced a Carry, then CF will be 1.

This Carry will be added into the higher bytes.

Please refer to our classroom example of adding 12FFH + 0001H = 1300H.

6) ADDC A; Rr “Add with carry”
Example:

ADDC A, RO; A € A + RO + Carry Flag

Operation:

Adds A Register with the value of @ RAM register along with the Carry of the previous addition.
Stores the result in A Register.

No of cycles required: 1

7) ADDC A, addr | “Add with carry™

Example:
ADDC A, 25H; A € A + [25H] + Carry Flag

Operation:
Adds A Register with the contents of the address along with the Carry of the previous addition.
Stores the result in A Register.

No of cycles required: 1

8) ADDC A, @'Rp] “Add with carry™

Example:
ADDC A, @RO; A € A + [RO] + Carry Flag

Operation:
Adds A Register with the contenis of the location peinted by the register along with the Carry of the previous addition.
Result is stored in A Register.

No of cycles required: 1

Scanned by CamScanner

~
9) SUBB A, #n | “Subtract with borrow™

Example:
SUBB A, #25H; A € A - 25H - Carry Flag

Operation:

Performs A Register — Immediate data — Carry Flag (Carry Flag holds the borrow of the previous subtraction).
Stores the result in A Register,

No of cycles required: 1
IMPORTANT TIP FROM BHARAT ACHARYA
SUBB is used when we want to Subtract two large numbers like 16 bit numbers.
First we Subtract the lower bytes,
If the Lower byte subtraction needs a borrow, then CF will be 1,
This Carry will be subtracted from the higher bytes.
It is important to realize that there is no ordinary SUB Instruction.
Hence if we want to perform simple 8-bit subtraction, we still have to use SUBB Instruction,
If we don't want Carry flag to interfere with the operation,
We must first clear the carry flag using CLR C Instruction before using SUBB.

10) SUBB A, Rr | “Subltract with borrow™

Example:
SUBB A, RO; A € A - RO - Carry Flag

Opcration:

Performs A Register — value of RAM register — Carry Flag (Carry Flag holds the borrow of the previous subtraction).
Stores the result in A Register.

No of cycles required: 1

11) SUBB A, addr | ~Subtract with borrow™
Example:

SUBB A, 25H; A € A - [25H] - Carry Flag

Operation:
Performs A Register — contents of memory address — Carry Flag (Carry Flag holds the borrow of the previous subtraction),
Stores the result in A Register.

No of cycles required: 1

12) SUBB A, @Rp “Subtract with borrow™

Example:
SUBB A, @RO; A € A - [RO] - Carry Flag

Operation:

Performs A Register — Contents of the memory location pointed by the register — Carry Flag.
Result is stored in A Register.

No of cycles required: 1

Scanned by CamScanner

13) INC A “*Increment™

Example:
INCA;A€A+1

Operation:
Increments the value of A register. Stores the result in A Register.

No of cycles required: 1
IMPORTANT TIP FROM BHARAT ACHARYA

During INC A, if A was FFH, it will roll over to 00H.

14) INC Rr “Increment”

Example:
INCRO; RO€ RO +1

Operation.
Increments the value of a RAM register. Stores the result in the same RAM Register.

No of cycles required: 1

15) INC addr “Increment™

Example:
INC 25H; [25H] €« [25H] + 1

Operation:

Increments the contents of a memory address. Stores the resull back in the same location.

No of cycles required: 1

16) INC @Rp “Increment”

Example:

INC @RO; [@RO] € [@RO] + 1

Opcration:

Increments the contents of a memory location pointed by RO. Will store the result back at the same location.

No of cycles required: 1

17) INC DPTR “Inerement™

Example:
INC DPTR; DPTR € DPTR + 1

Operation:
Increments the 16-bit value of DPTR register. Stores the result in DPTR Register.

No of cycles required: 2

Scanned by CamScanner

18) DECA “Decrement™

Example:
DECA;A€A-1

Operation:

Decrements the value of A register.
Stores the result in A Register.

No of cycles required: 1
IMPORTANT TIP FROM BHARAT ACHARYA
During DEC A, if A was O0H, it will roll back to FFH.
That's because 00H - 1 = - (01H) which is FFH in 2's complement form.
Please refer to classroom explanation for more clarity on this.
Also, do remember, DEC DPTR does not exists.
If you need to decrement DPTR, you can do it by individually decrementing DPL and DPH.
First decrement DPL. If it rolls back from 00H to FFH, then also decrement DPH.
E.g.:: 1300H - 1 = 12FFH.

19) DECRr “Decrement”
Example:

DECRO; RO€ RO0-1

Operation:

Decrements the value of a RAM register.
Stores the result in the same RAM Register.

No of cycles required: 1

20) DEC addr “Decrement”

Example:
DEC 25H; [25H] € [25H] - 1
Operation:

Decrements the contents of a memory address.
Stores the result back in the same location.

No of cycles required: 1

21) DEC @RP “Decrement”™
Example:
DEC @RO; [@R0] € [@RO] - 1

Operation:

Decrements the contents of a memory location pointed by R0.
Will store the result back at the same location.

No of cycles required: 1

Scanned by CamScanner

22) MUL AB *Multiply A and B”

Example:
MUL hB; B [H|nher} - A u_qw.gr) {- A X B

Operation:

Multiples the 8-bit values of A register and B register.
Stores the 16 bit result in B and A Registers.,
B register gets the Higher Byte, A register gets the Lower Byte,

No of cycles required: 4

23) DIV AB “Divide A by B”
Example:
DIV AB; B (remainder) + A (Quotient) € A = B

Operation:

Divides the 8-bit value of A register by the 8-bit value of B register.
Stores the result in B and A Registers.
B register gets the Remainder, A register geis the Quotient.

No of cycles required: 4

IMPORTANT TIP FROM BHARAT ACHARYA

During DIV AB, if B register is 00H, then the instruction will be aborted.

A and B registers will contain garbage values after the operation.

This is indicated to the programmer by the OVERFLOW FLAG.

If Overflow Flag becomes "1” after the operation, it simply means division by 0 was attempted.

Scanned by CamScanner

24) DA A “Decimal Adjust after Addition™
Example:

DA A;

Operation:

It is used when we want to add two decimal numbers (BCD numbers).
IWe first enter the decimal numbers, as if they are Hexadecimal.

We add them by normat ADD instruction.

The answer is then adjusted using DA A instruction.

DA A always works on A Register only.

It first checks the Lower nibble of A Register.
If Lower nibble is > 9 or Aux Carry is 1, then ADD 06H

It then checiks the Higher nibble of A Register.
If Higher nibble is > 9 or Carry Flag is 1, then ADD 60H

The finai answer will be stored in A and Carry flag.
Please refer numerous examples discussed in the class. For doubts call #BharatSir @ 9820408217
Assume we want to add 25d + 25d, the result must obviously be 50d.

We enter the numnbers as if they are hexadecimal, and add them by normal ADD instruction.

MOV A, #25H ;4 €25
ADD A,#25H ;A €44

Now we perform the adjustment using DAA instruction.

DA A ;A€ 50

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA
Please get this clear, "DA A does not convert any number from Hexadecimal to Decimal”.
It simply makes the addition work like decimal addition.

DA A can only be used “After performing an Addition” operation.

VIVA question: Put 25H In A register and show the working of DA A.
Reply: Invalid question! We must first perform addition. Simply putting 25H in A and doing DA A is absurd,

VIVA question: 29H and 3CH and show the working of DA A.
Reply: Invalid question! DA A is used to Add decimal numbers. 3C is not decimall

Also, do remember, DA A is an adjustment for Addition. So there is always a chance of a carry.
If the answer exceeds 99, the lower two digits will be in A and the highest digit will be Carry Flag.
If the answer is 160, A will contain 60 and Carry Flag will get 1.

Scanned by CamScanner

Scanned by CamScanner

25) ANL A, #n I “AND logically™

Example:
ANL A, #25H; A € A AND 25H

Operation:
Logically ANDs tite value of A register with the immediate data.
Stores the result in A Register,

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA
AND is used to CLEAR any bit of a register.

If we want to clear any bit, we must AND that particular bit with "0” and the remaining bits with *1”,
This is because, if we AND anything (0 or 1) with O, it becomes 0.

But if we AND anything (0 or 1) with 1, it remains the same.

Suppose we want to CLEAR the lower nibble of A register.
Assume: A register Is 95H = 1001 0101

AND this register with the number FOH = 1111 0000

As a result A will become 90H < 1001 0000

Please refer examples form Bharat Academy lecture notes for more clarity on this.

26) ANL A, Rr | “AND logically”

Example:
ANL A, RO; A € A AND RO

Opcration:

Logically ANDs the value of A register with the value of RAM register.
Stores the result in A Register.

No of cycles required: 1

27) ANL A, addr | “AND logically”
Example:

ANL A, 25H; A € A AND [25H]

Operation:

Logically ANDs the value af A register with contents of the address.
Stores the result in A Register.

No of cycles required: 1

Scanned by CamScanner

28) ANL A, @Rp “AND logically™

Example:
ANL A, @RO; A € A AND [RO]

Operation:

Logically ANDs the value of A reg. with contents of the location pointed by the reg.

Stores the result in A Register.

No of cycles required: 1

29) ANL addr, A | “AND logically”
Example:

ANL 25H, A; [25H] € [25H] AND A

Operation:

Logically ANDs contents of the address with the value of A register.
Stores the result at the address.

No of cycles required: 1

30) ANL addr, #n “AND logically”
Example;

ANL 25H, #30H; [25H] € [25H] AND 30H

Operation:

Logically ANDs contents of the address with the immediate data.
Stores the result at the address.

No of cycles required: 2

Scanned by CamScanner

31) ORL A, #n | “OR logically™

Example:
ORL A, #25H; A € A OR 25H

Operation:
Logically ORs the value of A register with the immediate data.
Stores the result in A Register,

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA

OR is used to SET any bit of a register,

If we want to set any bit, we must OR that particular bit with *1” and the remaining bits with “0",
This Is because, if we OR anything (0 or 1) with 1, it becomes 1.

But If we OR anything (0 or 1) with 0, It remains the same.

Suppose we want to SET the lower nibble of A register.
Assume: A reglister Is 95H = 1001 0101

OR this register with the number OFH < 0000 1111

As a result A will become 9FH =» 1001 1111

Please refer examples form Bharat Academy lecture notes for more clarity on this.

32) ORL A, Rr | “OR logically™
Example:
ORL A, RO; A € A OR RO

Operatioi:

Logically ORs the value of A register with the value of RAM register.
Stores the result in A Register.

No of cycles required: 1

33) ORL A, addr | “OR logically™

Example:
ORL A, 25H; A € A OR [25H]
Operation:

Logically ORs the value of A register with contents of the address.
Stores the result in A Register.

No of cycles required: 1

Scanned by CamScanner

34) ORL A, @Rp “OR logically™

Example:
ORL A, @RO; A € A OR [RO]

Operation:

Logically ORs the value of A reg. with contents of the location pointed by the reg.

Stores the result in A Register.

No of cycles required: 1

35) ORL addr, A “OR logically™
Example:
ORL 25H, A; [25H] € [25H] OR A

Operation:

Logically ORs contents of the address with the value of A register.
Stores the result at the address.

No of cycles required: 1

36) ORL addr, #n | “OR logically"

Example:
ORL 25H, #30H; [25H] € [25H] OR 30H
Operation:

Logically ORs contents of the address with the immediate data.
Srores the result al the address.

No of cycles required: 2

Scanned by CamScanner

37) XRL A, #n “Ex-OR logically™

Example:
XRL A, #25H; A € A XOR 25H

Operation:
Logically XORs the value of A register with the immediate data.
Stares the result in A Register.

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA

XOR is used to COMPLEMENT any bit of a register.

If we want to complement any bit, we must XOR that bit with *1” and the remaining bits with “0".
This is because, if we XOR anything (0 or 1) with 1, it gets complemented.

But if we XOR anything (0 or 1) with 0, it remains the same.

Suppose we want to COMPLEMENT the lower nibble of A register,
Assume: A register is 95H = 1001 0101

XOR this register with the number OFH = 0000 1111

As a result A will become SAH = 1001 1010

Please refer examples form Bharat Academy lecture notes for more clarity on this.

38) XRL A, Rr | “Ex-OR logicully”
Example:

XRL A, RO; A € A XOR RO

Opcration:

Logically XORs the value of A register with the value of RAM register.
Stores the result in A Register.

No of cycles required: 1

39) XRL A, addr | “Ex-OR logically™
Example:

XRL A, 25H; A € A XOR [25H]

Operation:

Logically XORs the value of A register with contents of the address.
Stores the result in A Register.

No of cycles required: 1

Scanned by CamScanner

40) XRL A, @Rp “Ex-OR logically™
Example:

XRL A, @RO; A € A XOR [RO]

Operation:
Logically XORs the value of A reg. with contents of the location pointed by the reg.
Stores the result in A Register.

No of cycles required: 1

41) XRL addr, A | “Iix-OR logically™
Example:

XRL 25H, A; [25H] € [25H] XOR A

Operation:

Logically XORs contents of the address with the value of A register.
Stores the result at the address.

No of cycles required: 1

42) XRL addr, #n | “Ex-OR logically™
Example:

XRL 25H, #30H; [25H] € [25H] XOR 30H

Operation:
Logically XORs contents of the address with the immediate data.
Stares the result at the address.

No of cycles required: 2

Scanned by CamScanner

43) RLA I “Rotate Left”
Example:

RL A; A € A register rotated left by one position

Operation:

Rorates the bits of A register in the Ieft direction by one position.
Eacl bit goes one position to the left.
MSB goes to the Carry flag as well as to the LSB.

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA

Rotates are used to determine the value of any bit, in A register.

To know the value of a bit, Rotate the register as many times, so that the bit comes into Carry Flag.
Now check the carry flag to know If your desired bit was 0 or 1.

44) RR A I *Rotate Right™

Example:

RR A; A € A reglster rotated right by one position
Operation:

Rotates the bits of A register in the right direction by one position.

Each bit goes one position to the right.
LSB goes to the Carry flag as well as to the MSB,

No of cycles required: 1

45) RLC A I “Rotate Left, with Carry”

Example:
RLC A; A € A register rotated left by one poslition along with the carry flag

Operation:
Rotates the bits of A register in the left direction by one position along with the carry flag.

Eacl: bit goes one position to the left.
MSB goes to the Carry flag and Carry Flag goes to the LSB.

No of cycles required: 1

46) RRC A I Rotate Right, with Carry™
Example:

RRC A; A € A register rotated right by one position along with the carry flag

Operation:
Rotates the bits of A register in the right direction by one position along with the carry flag.

Eacli bit goes one position to the right.
LSB goes io the Carry flag and Carry Flag goes fo the MSB.

No of cycles required: 1

Scanned by CamScanner

47) CPL A | “Complement A™

Example:
CPL A} A € One's complement of A.
Operation:

Complements the value af A register.
Warks just like a Not gate.

No of cycles required: 1

IMPORTANT TIP FROM BHARAT ACHARYA

CPL is used as a NOT operation.

If we do CPL after AND, it works like NAND.
CPL after OR, it works like NOR.

CPL after XOR, it works like XNOR.

48) CLR A “Clear A™
Example:

CLR A; A € 00H.

Operation:

Clears the entire A register and makes it 001,

No of cycles required: 1

49) SWAP A “SWAP A”
Example:
SWAP A; A |owernibble €2 A Higher Nibble

Operation:

Interchanges the Nibbles of A register.
If A register was 35H it will become 53H.
It is as good as rotating A register four times.

No of cycles required: 1

50) NOP “No operation™

Example:
NOP; No operation. PC simply becomes PC + 1.

Operation:

This instruction performs no operation.
It is typically used to produce a delay.

No of cycles required: 1

Scanned by CamScanner

BRANCH OPERATIONS OF 8051 (SJMP, AJMP AND L JMP)

SHORT JuMP
Syntax: SIMP radd; // Short Jump using the relative address

Range: (-128 ... +127) locations because “radd” is an 8-bit signed number
Size of instruction: 2 Bytes (Opcode of SIMP= 1Byte, radd = 1Byte)

New address calculation: PC € PC (address of next instruction) + radd

Usage: SIMP (unconditional) and ANNeshT IR REIB RNl one [{ones | | s[\FA=ITR € Important for VIVA

Description: tHere the branch address (radd) is calenlated as a relative distance from the next instruetion to the branch location.
In simple terms, instead of telling whoere we want to fump, we are telling how far we want to jump., This “radd " is then added 10 PC
which normally containg addresy of the next instruetion. For e.mm_m"es OfSJJ'FfP. pf(’ﬂ‘S(’ refer #BharatSir Lecture Notes

ABSOLUTE Jump

Syntax: AJMP sadd;// Absolute Jump using the short address
Range: max 2KB as long as the Jump Is within the Same Page
Size of instruction: 2 Bytes (Opcode of AJMP= 1Byte, sadd = 1Byte)

New address calculation:

PC € | PC | Opcode of AIMP | Sadd |
(16) S bits 3 bits 8 bits
Remains the same as branch Hence AIMP has Lower 8 bits of
is in the same page 8 opcodes the jump location

Usage: AJMP and ACALL.

Description: Here the entire program memory (64 KB), is divided into 32 pages, each page being of 2KB. We can jump to any
location of the same page, giving a max range of 2 KB. As the jump ts in the same page, only the lower 11 bits of the address will
change. Out of then, lower 8 bits are given by “sadd " and the higher 3 bits are given by the opeode of AJMP. 3 bits have 8
combinations, hence AJMP has § opcodes. For examples of AIMP, please refer #BharatSir Lecture Notes

LonG Jump

Syntax: LIMP ladd; // Long Jump using the long (full) address

Range: 64 KB because “ladd” is a 16-bit address so can be any value from 0000H... FFFFH.
Size of instruction: 3 Bytes (Opcode of LIMP= 1Byte, ladd = 2Bytes)

New address calculation: PC € ladd

Usage: LJMP, LCALL.

Description: This is the simplest tvpe of Jump. Here we simply give the address where we wish to jump using “ladd ™. This
“ladd " is then simply put into PC. For examples of LIMP, please refer #BharatSir Lecture Notes

Scanned by CamScanner

The flow of program proceeds in a sequential |
manner, from one instruction to the next |
instruction, unless a control transfer instruction is |
executed. The various types of control transfer
instruction in assembly language include
conditional or unconditional jumps and call
instructions.

Loop and Jump Instructions

Looping in the 8051

Repeating a sequence of instructions a certain
number of times is called a loop. An instruction |
DJNZ reg, label is used to perform a Loop |
operation. In this instruction, a register |is
decremented by 1; if it is not zero, then 8051 jumps
to the target address referred to by the label. |

The register is loaded with the counter for the
number of repetitions prior to the start of the loop. |
In this instruction, both the registers decrement
and the decision to jump are combined into a |
single instruction. The registers can be any of RO~
R7. The counter can also be a RAM location.

Scanned by CamScanner

Other Conditional Jumps

The following table lists the conditional jumps used
in 8051 -

Instruction Action

JZ JumpifA=0

JNZ JumpifAz0

DJNZ Decrement and Jump if register #
0

CJNE A, data Jump if A # data

CJNE reg, Jump if byte # data

#data

JC Jump if CY =1

JNC Jump if CY # 1

JB Jump if bit = 1

JNB Jump if bit=0

JBC Jump if bit = 1 and clear bit

Scanned by CamScanner

| E—
a2 JZ (jump if A = 0) - In this instruction, the
content of the accumulator is checked. If
it is zero, then the 8051 jumps to the
target address. JZ instruction can be used
only for the accumulator, it does not apply
to any other register.

2 JNZ (jump if A is not equal to 0) - In this
instruction, the content of the
accumulator is checked to be non-zero. If
it is not zero, then the 8051 jumps to the
target address.

2 JNC (Jump if no carry, jumps if CY = 0) -
The Carry flag bit in the flag (or PSW)
register is used to make the decision
whether to jump or not "JNC label®. The
CPU looks at the carry flag to see if it is
raised (CY = 1). If it is not raised, then the
CPU starts to fetch and execute
instructions from the address of the label.
If CY =1, it will not jump but will execute
the next instruction below JNC.

Scanned by CamScanner |

L |
= JC (Jump if carry, jumps if CY = 1) - If CY

=1, it jumps to the target address.
=2 JB (jump if bit is high)

= JNB (jump if bit is low)

Note - It must be noted that all conditional jumps
are short jumps, i.e., the address of the target must
be within —128 to +127 bytes of the contents of the
program counter.

Unconditional Jump Instructions

There are two unconditional jumps in 8051 -

2 LUMP (long jump) - LJMP is 3-byte
instruction in which the first byte
represents opcode, and the second and
third bytes represent the 16-bit address of
the target location. The 2-byte target
address is to allow a jump to any memory
location from 0000 to FFFFH.

Scanned by CamScanner

| A

58 SJMP (short jump) - It is a 2-byte
instruction where the first byte is the
opcode and the second byte is the relative
address of the target location. The relative
address ranges from 00H to FFH which is
divided into forward and backward jumps;
that is, within —128 to +127 bytes of
memory relative to the address of the
current PC (program counter). In case of
forward jump, the target address can be
within a space of 127 bytes from the
current PC. In case of backward jump, the
target address can be within —128 bytes
from the current PC.

Calculating the Short Jump Address

All conditional jumps (JNC, JZ, and DJNZ) are
short jumps because they are 2-byte instructions.
In these instructions, the first byte represents
opcode and the second byte represents the relative
address. The target address is always relative to
the value of the program counter. To calculate the
target address, the second byte is added to the PC
of the instruction immediately below the jump.

Scanned by CamScanner

Backward Jump Target Address —E_
Calculation

In case of a forward jump, the displacement value
Is a positive number between 0 to 127 (00 to 7F in
hex). However, for a backward jump, the
displacement is a negative value of 0 to —128.

CALL Instructions

CALL is used to call a subroutine or method.
Subroutines are used to perform operations or
tasks that need to be performed frequently. This
makes a program more structured and saves
memory space. There are two instructions - LCALL
and ACALL.

LCALL (Long Call)

LCALL is a 3-byte instruction where the first byte
represents the opcode and the second and third
bytes are used to provide the address of the target
subroutine. LCALL can be used to call subroutines
which are available within the 64K-byte address
space of the 8051.

Scanned by CamScanner

To make a successful return to the point after
execution of the called subroutine, the CPU saves
the address of the instruction immediately below
the LCALL on the stack. Thus, when a subroutine is
called, the control is transferred to that subroutine,
and the processor saves the PC (program counter)
on the stack and begins to fetch instructions from
the new location. The instruction RET (return)
transfers the control back to the caller after
finishing execution of the subroutine. Every

subroutine uses RET as the last instruction.

ACALL (Absolute Call)

ACALL is a 2-byte instruction, in contrast to LCALL
which is 3 bytes. The target address of the
subroutine must be within 2K bytes because only
11 bits of the 2 bytes are used for address. The
difference between the ACALL and LCALL is that
the target address for LCALL can be anywhere
within the 64K-bytes address space of the 8051,
while the target address of CALL is within a 2K-byte
range.

Scanned by CamScanner

N

TIMER SECTION OF 8051

8051 has 2, 16-bit Up Counters T1 and TO.

If the counter counts internal clock pulses It Is known as timer.

If It counts external clock pulses it Is known as counter.

Each counter is divided into 2, 8-bit registers TH1 - TL1 and THO - TLO.

The timer action is controlled mainly by the TCON and the TMOD registers.

TCON - Timer Control (SFR) [Bit-Addressable As TCON.7 to TCON.O]

[TF1 |[TR1 |[TFO |[TRO [IE1 [IT1 [I1EO |ITO |

TF1 and TFO: (Timer Overflow Flag)
Set (1) when Timer 1 or Timer 0 overflows respectively l.e. its bits roll over from all 1's to all 0's.
Cleared (0) when the processor executes ISR (address 001BH for Timer 1 and 000BH for Timer 0).

TR1 and TRO: (Timer Run Control Bit)
Set (1) - Starts counting on Timer 1 or Timer 0 respectively.
Cleared (0) - Halts Timer 1 or Timer 0 respectively.

IE1 and IEO: (External Interrupt Edge Flag)
Set (1) when external interrupt signal received at INT1 or INTO respectively.
Cleared (0) when ISR executed (address 0013H for Timer 1 and 0003H for Timer 0).

IT1 and ITO: (External Interrupt Type Cobtrol Bit)
Set (1) - Interrupt at INT1 or INTO must be -ve edge triggered.

Cleared (0) - Interrupt at INT1 or INTO must be low-level triggered.

Scanned by CamScanner

IMOD - Timer Mode Control (SFR) [NOT Bit-Addressable]

Gate |¢/T [M1 | MO [Gate [c/T [M1 [MO |
| |

| |
Timer 1 Timer 0

C/T: (Counter/TImer)
Set (1) - Acts as Counter (Counts external frequency on T1 and TO pin Inputs).
Cleared (0) - Acts as Timer (Counts internal clock frequency, fosc/12).

Gate: (Gate Enable Control bit)
Set (1) - Timer controlled by hardware i.e. INTX signal.
Cleared (0) - Counting independent of INTX signal.

M1, MO: (Mode Selection bits)
Used to select the operational modes of the respective Timer.

M1 MO Timer Mode
0 0 Mode 0
0 1 Mode 1
1 0 Mode 2
1 1 Mode 3

Timer Counter Interrupts

To use the timer, a certain count value is placed in the Count Register.

This value is the |Max Count - Desired Count + 1|

On each count (rising edge of the input clock) the counter increments Its value.
When the counter rolls over (i.e. form all 1's to all 0's) it is said to overfilow.
Thus the Timer Overflow Flag, TFX (TF1 or TFO) is set.

If timer interrupt Is enabled then the Timer Interrupt will occur on overflow.

Scanned by CamScanner

Timer Counter Logi

Timer
Frequency
C/T = 0 (TMOD Timer Oper:tbn/l/
@i~ Ty Timer Stages
Counter Jcﬁ =] (TMOD Counter Operation)
T1/0 Input Pin

TR1/0 8itIn TCON

D_J

Gate Bit iIn TMOD

INT1/0 Input Pin

As shown above, based on C/T bit the timer functions as a Counter or as a Timer.
If it is a Timer, It will count the internal clock frequency of 8051 divided by 12, (f/12).

If it is a Counter, the input clock signal is applied at the TX (T1 or TO) input pins for Timerl or
Timer0 respectiVEIY . #Please refer Bharat Sirs Lecture Notes for this ...

As shown the Timer is running only if the TRX bit (TR1 or TRO) is set.

Also if the Gate bit is set in the TMOD then the INTX (INT1 or INTO) pin must be “high (1)”
for the timer to count.

Scanned by CamScanner

a) Timer Mode 0 (13-bit Timer/Counter)

Clock Pulses
from Input Stage

y

TLX (5) THX (8) > TFX ——— Timer Interrupt

THX is used as an 8-bit counter.

TLX Is used as a 5-bit pre-set. Hence 13-bits are used for counting.

On each count the TLX increments.

Each time TLX rolls-over, THX increments.

Thus the input frequency Is divided by 32 (5-bits of TLX and 25 = 32).

The timer overflow flag TFX Is set only when THX overflows |.e. rolls from FFH to O0H.
Max Count = 2% = 8K = 8192 (1FFFH). Hence Max Delay <& 8192(12/f)

b) Timer Mode 1 (16-bit Timer/Counter)

Clock Pulses
from Input Stage

A 4

v

TLX (8)

THX (8) TFX —— Timer Interrupt

All 16-bits of the Counter are used (8 bits of THX and 8 bits of TLX).
On each count the 16-bit Timer increments.

The timer overflow flag TFX is set when the Timer rolis-over from FFFFH to 0000H.
Max Count => 2'® = 16K = 65536 (FFFFH). Hence Max Delay @ 65536(12/f).

Scanned by CamScanner

-

c¢) Timer Mode 2 (Auto reload TL from TH)

Clock Pulses

TLX (5) TFX —p Timer Interrupt
from Input Stage

Enable
“Reload”

THX (8)

TLX is used as an 8-bit counter.

THX holds the count value to be reloaded.

On each count TLX increments.

When TLX rolls-over (i.e. from FFH to 00H), the following events take place;

1. Timer overflow flag TFX is set, hence timer interrupt occurs.

2. The value of THX is copied into TLX. Hence TLX is auto-reloaded form THX, and the process
repeats.

Thus the timer interrupt occurs at regular intervals "Continuously".

This mode is used to generate a desired frequency using the Timer Flag.

Max Count 9 2°® = 256 (FFH). Hence Max Delay & 256(12/f).

d) Timer Mode 3 (Two 8-bit Timers Using Timer0)

Clock Pulses
from Input Stage

L 4

TLO (8) TFO — Timer Interrupt

fosc /12 ——p{ THO (8)

v

TF1 == Timer Interrupt

Timer 0 is used as 2 separate 8-bit timers THO and TLO.

TLO uses the control bits (TRO and TFO) of Timer 0.

It can work as a Timer or a Counter.

THO uses the control bits (TR1 and TF1) of Timer 1.

It can Wﬂrk Or'll\f dasS a Timer. #Please refer Bharat Sir's Lecture Noles for this ...

Timer 1 can be in Mode 0, Mode 1, or Mode 2, but will not generate an interrupt.

Scanned by CamScanner

—

8051 TIMER/COUNTER (HARDWARE DELAY) PROGRAMMING

Q10

WAP to generate a delay of 20 psec using internal timer-0 of 8051.
After the delay send a “1” through Port3.1. Assume Suitable Crystal
Frequency

NOTE:

SOLN:

WAIT:

HERE:

Q11

In 80351, if we select a Crystal of 12 MHz, then Timer freq will be

fosc/12 =» 1MHz. Hence each count will reguire 1/1MHz = 1 usec. Thus
for 20 upsec, the Desired Count will be 204 = 14H. For an Up-Counter
(Mode 1):

Count = Max Count - Desired Count + 1

Count = FFFF - 14 + 1

Count = FFECH #Piease refer Bharat Sir's Leclura Notes for this ...

MOV TMOD, #01H ; Program TMOD = (0000 0001),... Timer0 Model
MOV TLO, #0ECH ; Load lower byte of Count

MOV THO, #0FFH ; Load upper byte of Count

MOV TCON, #10H ; Program TCON =2 (0001 0000), ... start Timer0
JNB TCON.5, WAIT ; Wait for overflow

SETB P3.1 ; Send a “1” through Port3.1

MOV TCON, #00H ; Stop Timer0

SJMP HERE ; End of program

WAP to generate a Square wave of 1 KHz from the TxD pin of 8051,
using Timerl. Assume Clock Frequency of 12 MHz.

NOTE:

SOLN:

REPEAT:

WAIT:

For a Square wave of 1 KHz, the delay required is .5 msec.

We know, each count will require 1/1MHz =» 1 usec.

Thus for 500 usec, the Desired Count will be 50045 = 01F4H. For an
Up-Counter (Mode 1):

Count = Max Count - Desired Count + 1

Count = FFFF - 01F4 + 1

Count = FEOCH

CLR B3.1 ; Clear Txd Line initially

MOV TMOD, #10H ; Program TMOD = (0001 0000),... Timerl Mode1
MOV TL1, #QCH ; Lood lower byte of Count

MOV TH1, #0FEH ; Load upper byte of Count

MOV TCONW, #40H ; Program TCON = (0100 0000); ... start Timer1
JNB TCON.7, WAIT ; Wait for overflow

CPL P3.1 ; Toggle Txd pin after the delay

MOV TCON, #00H ; Stop Timer1

SJMP REPEAT ; Repeat the process

Scanned by CamScanner

12 WAP to generate a Rectangular wave of 1 KHz, having a 25% Duty Cycle
Q from the TxD pin of 8051, using Timerl. Assume XTAL of 12 MHz.

NOTE: TFor a Rectangular wave of 1 KHz, having 25% Duty Cycle:

Tox = 250 psec; Tosr = 750 psec.

For Toy: Desired Count = 250 4= 00FAH
County, = Max Count - Desired Count + 1
Countgy; = FFEFF — O00FA + 1

Countyy = FFO6H

For Tgpp: Desired Count = 750 4 = 02EEH

Countysy = Max Count - Desired Count + 1
COUntgFF = FFFEF - 02EE + 1
Count,;x = FD12H
SOLN: MOV TMCD, #10H ; Program TMOD = (0001 0000),... Timerl Mode1l
REPEAT: MOV TL1, #06H ; Load lower byte of Countoy
MOV TH1, #O0OFFH ; Load upper byte of Countoy
SETB P3.1 ; Display “1” at Txd
MOV TCON, #40H ; Program TCON =2 (0100 0000); ... start Timerl
ON: JNB TCON.7, ON ; Maintain “1” at Txd
CLR P3.1 ; Clear Txd
MOV TCON, #00H ; Stop Timer1
MOV TL1, #12H ; Load lower byte af Countg
MOV TH1, #0FDH ; Load upper byte of Countggs
MOV TCON, +#40H ; Program TCON =2 (0100 0000); ... start Timer1
OFF: JNB TCOM.7, OFF ; Maintain “0” at Txd
MOV TCON, #00H ; Stop Timer1
SJMP REPEAT ; Repeat the process

Note: If System Freq = 12MHz, it Is clear that 1 Count requires 1 msec.
In Mode 1, we have a 16bit Count.
Hence max pulses that can be desired is 2'° = 65536.
Count = Max Count - Desired Count + 1
= 65535 - 65536 + 1
= 0.
Thus we will get max delay if we load the count as 0000H, as It will have to “roll-over”
back to 0000H to overflow.
Hence Max delay if XTAL is of 12 MHz ... is 65536 psec 2 65.536 msec.
Similarly Max delay if XTAL is of 11.0592 MHz ... is 71106 psec 9 71.106 msec.

Scanned by CamScanner

13 WAP to generate a delay of 1 SECOND using Timerl.
Q Assume Clock Frequency of 12 MHz. (Popular Question in Collegel)

NOTE: Max delay if XTAL is of 12 MHz .. is 63536 upsec =» 65.536 msec.
Hence to get a delay of 1 second, we will have to perform the
counting repeatedly in a loop.

Lets keep the Desired Count 50000. (50 msec delay)

Now 500004 = C330H

Count = Max Count - Desired Count + 1

Count = FFFF - C350 + 1

Count = 3CBOH #piease refer Bhamt Sir's Lecture Nates for this ...

We will have to perform this counting lsec/50msec times = 20 times

SOLN: MOV TMOD, #10H ; Program TMOD = (0001 0000),... Timerl Mode1l
MOV RO, #14H , Load count 20 in RO
REPEAT: MOV TL1, #O0BOH ; Load lower byte of Countgy
MOV TH1, #3CH ; Load upper byte of Countgy
MOV TCCN, #40H s Program TCON = (0100 0000); ... start Timerl
WAIT: JNB TCON.1, WAIT ; Wait for an overflow
MOV TCON, #00H ; Stop Timerl
DJNZ R0, REPEAT ; repeat the process 20 times
HERE: SJMP HERE: ; End of program

Scanned by CamScanner

014

WAP to read the data from Portl, 10 times, each after a 1 sec delay.
Store the data from RAM locations 20H onwards. When the operation is
complete, ring an “Alarm” connected at Port3.1l. Assume CLK = 12 MHz.

NOTE:

SOLN:

REPEAT :

HERE:

DELAY:
REPEAT:

WAIT:

As seen from the previous program, for a delay of 1 second, we have
Count = 3CBOH. Counting has to be performed 20 times.

Also note that all ports of 8051 are o/p ports by default.
To program a port as i/p ports, all “1”s must be sent though it.

CLR
MOV
MOV

MOV
MOV
MOV
INC

P3.1
TMCD, #10H
90H, #O0FFH

RO, #0AH
R1, #20H
@R1, 90H
R1

ACALL DELAY
DJNZ RO, REPEAT

SETB P3.1

SJMP

MOV
MOV
MOV
MOV
JNEB
MOV

HERE:

R2, #14H
TL1, #0BOH
TH1, #3CH
TCON, #40H
TCON.1, WAIT
TCON, #00H

DJNZ RZ, REPEAT

RET

; Clear Port3.1 line
; Program TMOD = (0001 0000), ... Timerl Mode1l

; Program Port1 as i/p by sending all “1”s through it

; Load Data Count of 10 in RO

; Load Storage address in R1

; Read data from Port

; Increment data storage address from next Iteration
; Cali delay of 1 sec before going into next fteration

; Repeat till all 10 bytes are read

; Ring "Afarm” at Port3.1

; End of program

; Load count 20 in RO

; Load lower byte of Countgy

; Load upper byte of Countgy

; Program TCON = (0100 0000); ... start Timer1
; Walt for an overflow

; Stop Timerl

; Repeat the process 20 times

; End of delay routine

Scanned by CamScanner

g

INTERRUPTS OF 8051

8051 supports 5 interrupts.
2 External Interrupts are on the following pins

INT1

INTO

2 Internal Timer interrupts are:
Timer 1 Overflow Interrupt
Timer 0 Overflow Interrupt
1 Serial Port Interrupt (Common for RI or TI)
All interrupts are vectored |.e. they cause the program to execute an ISR from a pre-determined
address in the Program MemaorYy. #riease refer Blarat Sir's Leclure Noles for this....
Interrupts are controlled mainly by IE and IP SFR's and also by some bits of TCON SFR.

IE - Interrupt Enable (SFR) [Bit-Addressable As IE.7 to IE.O]

| EA | --- | ET2 | ES | ET1 [EX1 | ETO | EXO |

-nable All J

Enal Enable Timer | Enable Timer

1 = Enable All Interrupts Reserved 1 Interrupt 0 Interrupt

0 = Disable All Interrupts
Enable Serial Epable Ext. Enable Ext.
Interrupt Interrupt 1 Interrupt 0

I |

'

Enable respective Interrupt
Disable respective Interrupt

1=
D=

IP - Interrupt Priority (SFR) [Bit-Addressable As IP.7 to IP.0]

[--- | -—-| P2 | Ps [PT1 |PxX1]|PTO | PX0 |

|

Reserved Priority of Priority of
Timer 1 Int. Timer 0 Int.

Priority of Priority of Priority of
Serial Int. Ext. Int.1 Ext. Int.0
l |

}

= Priority of respective Interrupt < HIGH
= Priority of respective Interrupt = LOW

Scanned by CamScanner

Timer Overflow Interrupts (TF1 and TFO)
When any of the 2 Timers overflow, their respective bit TFX (TF1 or TFO) Is set in TCON SFR.
If Timer Interrupts are enabled then the timer interrupt occurs.
The TFX bits are cleared when their respective ISR Is executed.

Serial Port Interrupt (RI or TI)
While receiving serial data, when a complete byte is received the RI (receive interrupt) bit Is set

in the SCON.
During transmission, when a complete byte is transmitted the TI (transmit interrupt) bit is set in

the SCON.
ANY of these events can cause the Serial Interrupt (provided Serial Interrupt Is enabled).

The RI/TI bit Is not cleared automatically on executing the ISR. The program should explicitly
clear this bit to allow further Serial Interrupts.

External Interrupts (INT1 and INTO)

Pins INT1 and INTO are inputs for external interrupts.

These interrupts can be -ve edge or low-level triggered depending upon the ITO and IT1 bit in
TCON SFR. (ITX = 1 & -ve edge triggered)

Whew any of these interrupts occur the respective bits TE1 or IEO are set in the TCON SFR.

If External Interrupts are enabled then the ISR is executed from the respective address.

Interrupt Sequence

The following sequence Is executed to service an interrupt:
Address of next instruction of the main program i.e. PC is Pushed Into the Stack.
All interrupts are disabled, by making EA bit in IE SFR € 0.
Program Control is shifted to the Vector Address (location) of the ISR.

The ISR begins.

Returning Sequence
RETI instruction denotes the end of the ISR.
It causes the processor to POP the contents of the Stack Top into the PC.
It also re-enables interrupts by making EA bit in IE SFR € 1.
The main program resumes.

Interrupt Priorities
8051 has only two priority levels for the interrupts: Low and High.

Interrupt priorities are set using the IP SFR.,
As the name suggests, a high priority interrupt can interrupt a low priority interrupt.
It two or more Interrupts at the same level occur simultaneously then priorities are decided as

follows:

Scanned by CamScanner

INTERRUPT PRIORITY VECTOR ADDRESS
INTO 1 O0OO0O3H
TFO 2 000BH
INT1 3 0013H
TF1 4 001BH
Serial (RI or TI) 5 0023H

DRAW ONLY IF ASKED

IE Register

-ﬂ —1 IE0 —"—O/O—O{C

|IP Register

O ——

IE1

TF1

ARl —
Tl

Individual
Enables

DIAGRAM FOR INTERRUPTS... OPTIONAL

= High Priority
Interrupt

|

Global
Disablo

1 T

Interrupt Pel-

Iing
Sequence

Scanned by CamScanner

What is an Embedded System?

An Embedded System can be best described as a system which has both the
hardware and software and is designed to do a specific task. A good example for
an Embedded System, which many households have, is a Washing Machine.

We use washing machines almost daily but wouldn’t get the idea that it is an
embedded system consisting of a Processor (and other hardware as well) and
software.

Embedded System Example: Washing Machine

CJooo O _._
000

Control Unit:
Processor,RAM,ROM

With Software

11
111

Output: Display, Motor
© Electronics Hub

It takes some inputs from the user like wash cycle, type of clothes, extra soaking
and rinsing, spin rpm, etc., performs the necessary actions as per the instructions
and finishes washing and drying the clothes. If no new instructions are given for
the next wash, then the washing machines repeats the same set of tasks as the
previous wash.

Embedded Systems can not only be stand-alone devices like Washing Machines
but also be a part of a much larger system. An example for this is a Car. A
modern day Car has several individual embedded systems that perform their
specific tasks with the aim of making a smooth and safe journey.

https://www.electronicshub.org/wp-content/uploads/2021/04/Embedded-System-Example.jpg

Some of the embedded systems in a Car are Anti-lock Braking System (ABS),
Temperature Monitoring System, Automatic Climate Control, Tire Pressure
Monitoring System, Engine Oil Level Monitor, etc.

Programming Embedded Systems

As mentioned earlier, Embedded Systems consists of both Hardware and
Software. If we consider a simple Embedded System, the main Hardware Module
Is the Processor. The Processor is the heart of the Embedded System and it can
be anything like a Microprocessor, Microcontroller, DSP, CPLD (Complex
Programmable Logic Device) or an FPGA (Field Programmable Gated Array).

All these devices have one thing in common: they are programmable i.e., we can
write a program (which is the software part of the Embedded System) to define
how the device actually works.

Embedded Software or Program allow Hardware to monitor external events
(Inputs / Sensors) and control external devices (Outputs) accordingly. During this
process, the program for an Embedded System may have to directly manipulate
the internal architecture of the Embedded Hardware (usually the processor) such
as Timers, Serial Communications Interface, Interrupt Handling, and I/O Ports
etc.

From the above statement, it is clear that the Software part of an Embedded
System is equally important as the Hardware part. There is no point in having
advanced Hardware Components with poorly written programs (Software).

There are many programming languages that are used for Embedded Systems
like Assembly (low-level Programming Language), C, C++, JAVA (high-level
programming languages), Visual Basic, JAVA Script (Application level
Programming Languages), etc.

In the process of making a better embedded system, the programming of the
system plays a vital role and hence, the selection of the Programming Language
IS very important.

Factors for Selecting the Programming Language

The following are few factors that are to be considered while selecting the
Programming Language for the development of Embedded Systems.

« Size: The memory that the program occupies is very important as
Embedded Processors like Microcontrollers have a very limited amount of
ROM (Program Memory).

o Speed: The programs must be very fast i.e., they must run as fast as
possible. The hardware should not be slowed down due to a slow running
software.

« Portability: The same program can be compiled for different processors.

« Ease of Implementation

« Ease of Maintenance

« Readability

Earlier Embedded Systems were developed mainly using Assembly Language.
Even though Assembly Language is closest to the actual machine code
instructions and produces small size hex files, the lack of portability and high
amount of resources (time and man power) spent on developing the code, made
the Assembly Language difficult to work with.

There are other high-level programming languages that offered the above
mentioned features but none were close to C Programming Language. Some of
the benefits of using Embedded C as the main Programming Language:

Significantly easy to write code in C

Consumes less time when compared to Assembly

Maintenance of code (modifications and updates) is very simple

Make use of library functions to reduce the complexity of the main code
You can easily port the code to other architecture with very little
modifications

Introduction to Embedded C Programming Language

Before going in to the details of Embedded C Programming Language and basics
of Embedded C Program, we will first talk about the C Programming Language.

The C Programming Language, developed by Dennis Ritchie in the late 60’s and
early 70’s, is the most popular and widely used programming language. The C
Programming Language provided low level memory access using an
uncomplicated compiler (a software that converts programs to machine code)
and achieved efficient mapping to machine instructions.

The C Programming Language became so popular that it is used in a wide range
of applications ranging from Embedded Systems to Super Computers.

Embedded C Programming Language, which is widely used in the development
of Embedded Systems, is an extension of C Program Language. The Embedded
C Programming Language uses the same syntax and semantics of the C
Programming Language like main function, declaration of datatypes, defining
variables, loops, functions, statements, etc.

The extension in Embedded C from standard C Programming Language include
I/O Hardware Addressing, fixed point arithmetic operations, accessing address
spaces, etc.

Difference between C and Embedded C

There is actually not much difference between C and Embedded C apart from
few extensions and the operating environment. Both C and Embedded C are ISO
Standards that have almost same syntax, datatypes, functions, etc.

Embedded C is basically an extension to the Standard C Programming
Language with additional features like Addressing 1/0, multiple memory
addressing and fixed-point arithmetic, etc.

C Programming Language is generally used for developing desktop applications,
whereas Embedded C is used in the development of Microcontroller based
applications.

Basics of Embedded C Program

Now that we have seen a little bit about Embedded Systems and Programming
Languages, we will dive in to the basics of Embedded C Program. We will start
with two of the basic features of the Embedded C Program: Keywords and
Datatypes.

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the microcontroller. The
size of the hex file produced by the compiler is one of the main concerns of microcontroller
programmers, for two reasons:

1. Microcontrollers have limited on-chip ROM.

2. The code space for the 8051 is limited to 64K bytes.

How does the choice of programming language affect the compiled program size? While
Assembly language produces a hex file that is much smaller than C, programming in
Assembly language is tedious and time consuming. C programming, on the other hand,
is less time consuming and much easier to write, but the hex file size produced is much
larger than if we used Assembly language. The following are some of the major reasons
for writing programs in C instead of Assembly:

1. Itis easier and less time consuming to write in C than Assembly.

2. Cis easier to modify and update.

3. You can use code available in function libraries.

4. C code is portable to other microcontrollers with little or no modification.

Keywords in Embedded C

A Keyword is a special word with a special meaning to the compiler (a C
Compiler for example, is a software that is used to convert program written in C
to Machine Code). For example, if we take the Keil's Cx51 Compiler (a popular C
Compiler for 8051 based Microcontrollers) the following are some of the
keywords:

e hit

e Shit

o sSfr

« small
« large

The following table lists out all the keywords associated with the Cx51 C
Compiler.

at alien bdata
bit code compact
data far idata
interrupt large pdata
_priority reentrant shit

sfr sfrl6 small

_task using xdata

SECTION 7.1: DATA TYPES AND TIME DELAY IN 8051 C
In this section we first discuss C data types for the 8051 and then provide code for
time delay functions.
C data types for the 8051
Since one of the goals of 8051 C programmers is to create smaller hex files, it is
worthwhile to re-examine C data types for 8051 C. In other words, a good
understanding of C data types for the 8051 can help programmers to create smaller
hex files. In this section we focus on the specific C data types that are most useful and
widely used for the 8051 microcontroller.
Unsigned char
Since the 8051 is an 8-bit microcontroller, the character data type is the most natural
choice for many applications. The unsigned char is an 8-bit data type that takes a value
in the range of 0 — 255 (00 — FFH). It is one of the most widely used data types for the
8051. In many situations, such as setting a counter value.

where there is no need for signed data we should use the unsigned char instead of the
signed char. Remember that C compilers use the signed char as the default if we do not
put the keyword unsigned in front of the char (see Example 7-1). We can also use the
unsigned char data type for a string of ASCIl characters, including extended ASCII
characters. Example 7-2 shows a string of ASCIl characters. See Example 7-3 for
toggling ports.

In declaring variables, we must pay careful attention to the size of the data and try to use
unsigned char instead of int if possible. Because the 8051 has a limited number of
registers and data RAM locations, using the int in place of the char data type can lead to
a larger size hex file. Such a misuse of the data types in compilers such as Microsoft
Visual C++ for x86 IBM PCs is not a significant issue.

Example 7-2

Write an 8051 C program to send hex values for ASCII characters of 0, 1, 2, 3,4, 5, A,

B. C, and D to port PI.

Solution:
v2id mainivoid)

unsigned char mynum([]= "01234SABCD";
unsigned char z;
Icr 2=0;2<=10;2++)

sasTYUMLZ] ;

Example 7-1
Write an 8051 C program to send values 00 - FF to port P1.

Solution:
#include <regS1.h>
void main(void)
{
unsigned char z;
for(z=0;2z<=255;2++)
Pl=z;

}

Run the above program on your simulator to see how P1 displays values 00 - FFH in
binary.

Run the above program on your simulator to see how PI displays values 30H, 31H,
32H. 33H. 34H. 35H. 41H. 42H, 43H, and 44H, the hex values for ASCII 0, 1, 2, and so
on.

Example 7-3
Write an 8051 C program to toggle all the bits of Pl continuously. Solution:
// Toggle PI forever “include <reg5l.h> void main (void)

{

for(;;) //repeat forever
{
P1=0x55; //0x indicateas the data is in hex ({(binary)
Pl=0xAA;
}
}

Run the above program on your simulator to see how PI toggles continuously. Examine
the asm code generated by the C compiler.

Signed char

The signed char is an 8-bit data type that uses the most significant bit (D7 of D7 — DO) to
represent the — or + value. As a result, we have only 7 bits for the magnitude of the signed
number, giving us values from -128 to +127. In situations where + and — are needed to
represent a given quantity such as temperature, the use of the signed char data type is a
must.

Again notice that if we do not use the keyword unsigned, the default is the signed value.
For that reason we should stick with the unsigned char unless the data needs to be
represented as signed numbers.

Example 7-4

Write an 8051 C program to send values of -4 to +4 to port P1.

Solution:
//sign numbers
#include <regSl.h>
void main(void)
{

char mynum()= ,¢',~1,+2,-2,+3,-3,4+4,-4};

unsigned char z;

for(z=0;2z<=8;z++)

Pi=mynum [z];

1
}
i

Run the above program on your simulator to see how PI displays values of 1, FFH, 2,
FEH, 3, FDH, 4, and FCH, the hex values for +!,-!, +2, -2, and so on.

Unsigned int

The unsigned int is a 16-bit data type that takes a value in the range of 0 to 65535 (0000
— FFFFH). In the 8051, unsigned int is used to define 16-bit variables such as memory
addresses. It is also used to set counter values of more than 256. Since the 8051 is an
8-bit microcontroller and the int data type takes two bytes of RAM, we must not use the
int data type unless we have to. Since registers and memory accesses are in 8-bit chunks,
the misuse of int variables will result in a larger hex file. Such misuse is not a big deal in
PCs with 256 megabytes of memory, 32-bit Pentium registers and memory accesses, and
a bus speed of 133 MHz. However, for 8051 programming do not use unsigned int in
places where unsigned char will do the job. Of course the compiler will not generate an
error for this misuse, but the overhead in hex file size is noticeable. Also in situations
where there is no need for signed data (such as setting counter values), we should use
unsigned int instead of signed int. This gives a much wider range for data declaration.
Again, remember that the C compiler uses signed int as the default if we do not use the
keyword unsigned.

Signed int

Signed int is a 16-bit data type that uses the most significant bit (015 of D15 — DO) to
represent the — or + value. As a result, we have only 15 bits for the magnitude of the
number, or values from -32,768 to +32,767.

Shit (single bit)

The sbit keyword is a widely used 8051 C data type designed specifically to access single-
bit addressable registers. It allows access to the single bits of the SFR registers. As we
saw in Chapter 5, some of the SFRs are bit*addressable. Among the SFRs that are widely
used and are also bit-addressable are ports PO -P3. We can use sbhit to access the
individual bits of the ports as shown in Example 7-5.

Example 7-5

Write an 8051 C program to toggle bit DO of the port PI (PI1.O) 50,000 times.

Solution:
#include <regSl.h>
sbit MYBIT = P170; //notice that sbit is
//declared outside of main
void main(void)
{
unsigned int z;
for (z=0; z<=50000; 2z++)
{
MYBIT = 0;
MYBIT = 11;
}
}

Run the above program on your simulator to see how P1.0 toggles continuously.
Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 —
2FH. Notice that while the sbit data type is used for bit-addressable SFRs, the bit data
type is used for the bit-addressable section of RAM space 20 -2FH. To access the byte-
size SFR registers, we use the sfr data type. We will see the use of sbit, bit, and sfr data
types in the next section.

Table 7-1; Some Widely Used Data Types for 8051 C

Data Type Size in Bits Data Range/Usage

unsiged char 8-bit 0 to 255

{signed) char 8-bit —128 to +127

unsigned int 16-bit 0 to 65535

(signd) int 16-bit -32,768 to +32,767

sbit 1-bit SER bit-addressable only

bit 1-bit RAM bit-addressable only

sfr 8-bit RAM addresses 80 - FFH only
Time Delay

There are two ways to create a time delay in 8051 C:
1. Using a simple for loop
2. Using the 8051 timers
In either case, when we write a time delay we must use the oscilloscope to measure the
duration of our time delay. Next, we use the for loop to create time delays. Discussion of
the use of the 8051 timer to create time delays is postponed until Chapter 9.
In creating a time delay using a for loop, we must be mindful of three factors that can
affect the accuracy of the delay.
1. The 8051 design. Since the original 8051 was designed in 1980, both the fields
of 1C technology and microprocessor architectural design have seen great
advancements. As we saw in Chapter 3, the number of machine cycles and the
number of clock periods per machine cycle vary among different versions of
the 8051/52 microcontroller. While the original 8051/52 design used 12 clock

periods per machine cycle, many of the newer generations of the 8051 use
fewer clocks per machine cycle. For example, the DS5000 uses 4 clock peri
ods per machine cycle, while the DS89C420 uses only one clock per machine
cycle.

2. The crystal frequency connected to the XI — X2 input pins. The duration of the
clock period for the machine cycle is a function of this crystal frequency.

3. Compiler choice. The third factor that affects the time delay is the compiler
used to compile the C program. When we program in Assembly language, we
can control the exact instructions and their sequences used in the delay sub
routine. In the case of C programs, it is the C compiler that converts the C
statements and functions to Assembly language instructions. As a result, dif
ferent compilers produce different code. In other words, if we compile a given
8051 C programs with different compilers, each compiler produces different
hex code.

For the above reasons, when we write time delays for C, we must use the oscilloscope to

measure the exact duration. Look at Examples 7-6 through 7-8.

Example 7-6

Write an 8051 C program to toggle bits of Pl continuously forever with some

delay. Solution:

// Toggle PI forever with some delay in between

“include <regb5l.h>

void main(void}
{

1

A\Y

on” and “off”,

unsigned int x;

for(;;) //repeat forever
{
Pl=0x55;
for{x=0;%x<40000;x++); //delay size unknown
P1l=0xAA;

for(x=0;x<40000;x++);

o
}

Example 7-7

Write an 8051 C program to toggle the bits of Pl ports continuously with a 250 ms
delay.

Solution:

The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

#include <regS1l.h>
void MSDelay(unsigned int);
void main(void)

{

while (1) //repeat forever

{
P1=0x55;
MSDelay (250} ;
Pl=0xAA;
MSDelay(250) ;

z.d MSDelay (unsigned int itime)
' unsigned int i, 3J;
forii=0;icitime;i++)
for(3=0;3<1275;3++);

Run the above program on your Trainer and use the oscilloscope to measure the delay.

Example 7-8
Write a 8051 C program to toggle all the bits of PO and P2 continuously with a 250 ms

delay.

Solution:
//This program is tested for the DS89C420 with XTAL = 11.0592 MHz

#include <regSl.h>
void MSDelay(unsigned int);
void main(void)

{
while (1) //another way to do it forever
{
P0=0x55;
P2=0x55;
MSDelay (250} ;
PO=0XxAA;
P2=0xAA;
MSDelay (250} ;
}
}
void MSDelay(unsigned int itime)
{

unsigned int i, jJ;
for(i=0;icitime;i++)
for(j3=0;3<1275;j++);

Basic Structure of an Embedded C Program (Template
for Embedded C Program)

The next thing to understand in the Basics of Embedded C Program is the basic
structure or Template of Embedded C Program. This will help us in
understanding how an Embedded C Program is written.

The following part shows the basic structure of an Embedded C Program.

o Multiline Comments Denoted using /*...... */
o Single Line Comments. Denoted using //
o Preprocessor Directives #include<...> or #define
o Global Variables Accessible anywhere in the program
o Function Declarations Declaring Function
o Main Function Main Function, execution begins here
{
Local Variables Variables confined to main function
Function Calls Calling other Functions
Infinite Loop Like while(1) or for(;;)
Statements
}
o Function Definitions Defining the Functions
{
Local Variables Local Variables confined to this Function
Statements
}

Before seeing an example with respect to 8051 Microcontroller, we will first see
the different components in the above structure.

Different Components of an Embedded C Program

https://www.electronicshub.org/8051-microcontroller-introduction/

Comments: Comments are readable text that are written to help us (the reader)
understand the code easily. They are ignored by the compiler and do not take up
any memory in the final code (after compilation).

There are two ways you can write comments: one is the single line comments
denoted by // and the other is multiline comments denoted by /*....*/.

Preprocessor Directive: A Preprocessor Directive in Embedded C is an
indication to the compiler that it must look in to this file for symbols that are not
defined in the program.

In C Programming Language (also in Embedded C), Preprocessor Directives are
usually represented using # symbol like #include... or #define....

In Embedded C Programming, we usually use the preprocessor directive to
indicate a header file specific to the microcontroller, which contains all the SFRs
and the bits in those SFRs.

In case of 8051, Keil Compiler has the file “reg51.h”, which must be written at the
beginning of every Embedded C Program.

Global Variables: Global Variables, as the name suggests, are Global to the
program i.e., they can be accessed anywhere in the program.

Local Variables: Local Variables, in contrast to Global Variables, are confined to
their respective function.

Main Function: Every C or Embedded C Program has one main function, from
where the execution of the program begins.

Basic Embedded C Program

Till now, we have seen a few Basics of Embedded C Program like difference
between C and Embedded C, basic structure or template of an Embedded C
Program and different components of the Embedded C Program.

Continuing further, we will explore in to basics of Embedded C Program with the
help of an example. In this example, we will use an 8051 Microcontroller to blink
LEDs connected to PORT1 of the microcontroller.

Example of Embedded C Program

The following image shows the circuit diagram for the example circuit. It contains
an 8051 based Microcontroller (AT89S52) along with its basic components (like

RESET Circuit, Oscillator Circuit, etc.) and components for blinking LEDs (LEDs
and Resistors).

B«LED

—
afpF | 1108 :‘;‘
—a P
Pt s——
L g P17
- }LJL KTALZ
- £ peen PaORE
P P UTHD foee SR
EA Pa 2T fl2
10%4) PAFTT s
P340 f=i2
P3aTt 12 B ——
P sl il
PITRD 1L
i 100800 P2 0IAS ﬁ e
= PO w01 P2 1A 2
t PO A0 P2 20 ﬁ -
PO VADD e .
2 pgamoe Frann =
t PO SD5 e
Zd oo @ o Tary
4 po mor & F2IAY 2

AT89SS2

In order to write the Embedded C Program for the above circuit, we will use the
Keil C Compiler. This compiler is a part of the Keil pVision IDE. The program is
shown below.

Sample Code
#include<reg51.h> // Preprocessor Directive
void delay (int); // Delay Function Declaration

https://www.electronicshub.org/basic-electronic-components/

void main(void) // Main Function

{

P1 = 0x00;

/* Making PORT1 pins LOW. All the LEDs are OFF.
*(P1is PORT1, as defined in reg51.h) */

while(1) // infinite loop

{

P1 = OxFF; // Making PORT1 Pins HIGH i.e. LEDs are ON.
delay(1000);

[* Calling Delay function with Function parameter as 1000.
* This will cause a delay of 1000mS i.e. 1 second */

P1 = 0x00; // Making PORT1 Pins LOW i.e. LEDs are OFF.
delay(1000);

}

}

void delay (int d) // Delay Function Definition
{

unsigned int i=0; // Local Variable. Accessible only in this function.

[* This following step is responsible for causing delay of 1000mS
* (or as per the value entered while calling the delay function) */

for(; d>0; d-)

{

for(i=250; i>0; i — -);
for(i=248; i>0; i — -);
}

}

1/0 PORT PROGRAMMING

In 8051, I/O operations are done using four ports and 40 pins. The following pin
diagram shows the details of the 40 pins. 1/0O operation port reserves 32 pins where
each port has 8 pins. The other 8 pins are designated as V.., GND, XTAL1, XTALZ2,
RST, EA (bar), ALE/PROG (bar), and PSEN (bar).

It is a 40 Pin PDIP (Plastic Dual Inline Package)

P1.0[1] \ J 40] Vee
P11[2] 39 | PO.0OFADO
P12[3| 33 | P0.1/AD1
P13[4] 37| P0.2/AD2
P14[5] | 36 | P0.3/AD3
P15[6 | 35 | P0O.4/AD4
P16[7| [34 | PO.5/ADS
P17[8] 33| P0.6/AD6
RST[9 | 32| P0.7/AD7
RxD/P3.0 [10 | 31 |EANVpp
T=D/P3.1[11| 30 | ALE/PROG
INTO/P3.2 [12 | [29 | PSEN
INT1/P3.3[13 28] P2.7/A15
T0/P3.4[14 | 27 |P2.6/414
T1/P3.5[15] | 26 |P2.5/413
WR/P3.6 [16| (25 | P2.4i412
RD/P3.7 [17] (24 |P2.3/A11
XTAL2[18] [23]P2.2/410
XTAL1[19] [22]P2.1/A9
Vss [20] [21]P2.0/A8

Note - In a DIP package, you can recognize the first pin and the last pin by the cut
at the middle of the IC. The first pin is on the left of this cut mark and the last pin
(i.e. the 40" pin in this case) is to the right of the cut mark.

I/O Ports and their Functions

The four ports PO, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon
RESET, all the ports are configured as inputs, ready to be used as input ports.
When the first 0 is written to a port, it becomes an output. To reconfigure it as an
input, a 1 must be sent to a port.

Port 0 (Pin No 32 — Pin No 39)

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3
ports, we normally connect PO to 10K-ohm pull-up resistors to use it as an input or
output port being an open drain.

It is also designated as ADO-AD7, allowing it to be used as both address and data.
In case of 8031 (i.e. ROMless Chip), when we need to access the external ROM,
then PO will be used for both Address and Data Bus. ALE (Pin no 31) indicates if PO
has address or data. When ALE = 0, it provides data DO-D7, but when ALE =1, it
has address AO-A7. In case no external memory connection is available, PO must
be connected externally to a 10K-ohm pull-up resistor.

Vce
$ 10 K
:

P0.0
PO. 1 -
P0.2 - ©
8051 g3 l 3
P0.4 ” <
P0.5
P0.6 .
P0.7 0:=
MOV A, #0FFH ; (comments: A=FFH (Hexadecimal 1i.e. A=1111 1111)
MOV PO, A ; (Port0 have 1's on every pin so that it works as
Input)

Port 1 (Pin 1 through 8)

It is an 8-bit port (pin 1 through 8) and can be used either as input or output. It
doesn't require pull-up resistors because they are already connected internally.
Upon reset, Port 1 is configured as an input port. The following code can be used to
send alternating values of 55H and AAH to Port 1.

;Toggle all bits of continuously

MOV A, #55

BACK:

MOV P2,A

ACALL DELAY

CPL A ;complement (invert) reg. A
SJMP BACK

If Port 1 is configured to be used as an output port, then to use it as an input port
again, program it by writing 1 to all of its bits as in the following code.

;Toggle all bits of continuously

MOV A , #0FFH ;A = FF hex

MOV P1,A ;Make Pl an input port

MOV A, P1 ;get data from Pl

MOV R7,A ;save it in Reg R7

ACALL DELAY ywait

MOV A,P1 ;get another data from Pl
MOV R6,A ;save it in R6

ACALL DELAY ywait

MOV A,P1 ;get another data from Pl
MOV R5,A ;save it in RS

Port 2 (Pins 21 through 28)

Port 2 occupies a total of 8 pins (pins 21 through 28) and can be used for both input
and output operations. Just as P1 (Port 1), P2 also doesn't require external Pull-up
resistors because they are already connected internally. It must be used along with
PO to provide the 16-bit address for the external memory. So it is also designated as
(AO-A7), as shown in the pin diagram. When the 8051 is connected to an external
memory, it provides path for upper 8-bits of 16-bits address, and it cannot be used
as 1/0. Upon reset, Port 2 is configured as an input port. The following code can be
used to send alternating values of 55H and AAH to port 2.

;Toggle all bits of continuously

MOV A, #55

BACK:

MOV P2,A

ACALL DELAY

CPL A ; complement (invert) reg. A
SJIMP BACK

If Port 2 is configured to be used as an output port, then to use it as an input port
again, program it by writing 1 to all of its bits as in the following code.

;Get a byte from P2 and send it to P1

MOV A, #0FFH ;A = FF hex

MOV P2,A ;make P2 an input port
BACK:

MOV A,P2 ;get data from P2

MOV P1,A ;send it to Port 1
SJMP BACK ; keep doing that

Port 3 (Pins 10 through 17)

It is also of 8 bits and can be used as Input/Output. This port provides some
extremely important signals. P3.0 and P3.1 are RxD (Receiver) and TxD
(Transmitter) respectively and are collectively used for Serial Communication. P3.2
and P3.3 pins are used for external interrupts. P3.4 and P3.5 are used for timers TO
and T1 respectively. P3.6 and P3.7 are Write (WR) and Read (RD) pins. These are
active low pins, means they will be active when 0 is given to them and these are

used to provide Read and Write operations to External ROM in 8031 based
systems.

P3 Bit Function Pin

P3.0 RxD 10
P3.1< TxD 11
P3.2< Complement of INTO 12
P3.3< INT1 13
P3.4 < TO 14
P3.5< T1 15
P3.6 < WR 16
P3.7 < Complement of RD 17

Dual Role of Port O and Port 2

Dual role of Port 0 — Port 0 is also designated as ADO-AD7, as it can be
used for both data and address handling. While connecting an 8051 to
external memory, Port 0 can provide both address and data. The 8051
microcontroller then multiplexes the input as address or data in order to save
pins.

Dual role of Port 2 — Besides working as 1/0O, Port P2 is also used to provide
16-bit address bus for external memory along with Port 0. Port P2 is also
designated as (A8— A15), while Port O provides the lower 8-bits via AO—A7. In
other words, we can say that when an 8051 is connected to an external
memory (ROM) which can be maximum up to 64KB and this is possible by
16 bit address bus because we know 216 = 64KB. Port2 is used for the
upper 8-bit of the 16 bits address, and it cannot be used for 1/0O and this is
the way any Program code of external ROM is addressed.

Hardware Connection of Pins

V.. — Pin 40 provides supply to the Chip and itis +5 V.

Gnd - Pin 20 provides ground for the Reference.

e XTAL1, XTAL2 (Pin no 18 & Pin no 19) - 8051 has on-chip oscillator but
requires external clock to run it. A quartz crystal is connected between the
XTAL1 & XTAL2 pin of the chip. This crystal also needs two capacitors of
30pF for generating a signal of desired frequency. One side of each
capacitor is connected to ground. 8051 IC is available in various speeds and
it all depends on this Quartz crystal, for example, a 20 MHz microcontroller
requires a crystal with a frequency no more than 20 MHz.

C2
o | I XTAL2
30pF D fupglpin
C1
3k I XTAL1
J0pF
I GND

e« RST (Pin No. 9) - Itis an Input pin and active High pin. Upon applying a high
pulse on this pin, that is 1, the microcontroller will reset and terminate all
activities. This process is known as Power-On Reset. Activating a power-on
reset will cause all values in the register to be lost. It will set a program
counter to all 0's. To ensure a valid input of Reset, the high pulse must be
high for a minimum of two machine cycles before it is allowed to go low,
which depends on the capacitor value and the rate at which it charges.
(Machine Cycle is the minimum amount of frequency a single instruction
requires in execution).

e EA or External Access (Pin No. 31) - It is an input pin. This pin is an active
low pin; upon applying a low pulse, it gets activated. In case of
microcontroller (8051/52) having on-chip ROM, the EA (bar) pin is connected
to V.. But in an 8031 microcontroller which does not have an on-chip ROM,
the code is stored in an external ROM and then fetched by the
microcontroller. In this case, we must connect the (pin no 31) EA to Gnd to
indicate that the program code is stored externally.

VCC

|

10 pF 31

I EANVPP
I

30 pF d 1—1 X1

1
82K 1.0592 MHz

} T X2

30 pF 18

= RST

e« PSEN or Program store Enable (Pin No 29) — This is also an active low pin,
i.e., it gets activated after applying a low pulse. It is an output pin and used
along with the EA pin in 8031 based (i.e. ROMLESS) Systems to allow
storage of program code in external ROM.

e ALE or (Address Latch Enable) — This is an Output Pin and is active high. It
is especially used for 8031 IC to connect it to the external memory. It can be
used while deciding whether PO pins will be used as Address bus or Data
bus. When ALE = 1, then the PO pins work as Data bus and when ALE = 0,
then the PO pins act as Address bus.

I/O Ports and Bit Addressability

It is a most widely used feature of 8051 while writing code for 8051. Sometimes we
need to access only 1 or 2 bits of the port instead of the entire 8-bits. 8051 provides
the capability to access individual bits of the ports.

While accessing a port in a single-bit manner, we use the syntax "SETB X. Y"
where X is the port number (0 to 3), and Y is a bit number (0 to 7) for data bits DO-
D7 where DO is the LSB and D7 is the MSB. For example, "SETB P1.5" sets high
bit 5 of port 1.

The following code shows how we can toggle the bit P1.2 continuously.

AGATIN:

SETB P1.2
ACALL DELAY
CLR P1.2
ACALL DELAY
SJIMP AGAIN

Single-Bit Instructions

Instructions

SETB bit

CLR bit

CPL bit

JB bit, target

JNB bit, target

JBC bit, target

Function

Set the bit (bit = 1)

clear the bit (bit = 0)

complement the bit (bit = NOT bit)

jump to target if bit = 1 (jump if bit)

jump to target if bit = 0 (jump if no bit)

jump to target if bit = 1, clear bit (jJump if bit, then clear)

SERIAL COMMUNICATION PROGRAMMING

Transmitting and receiving data in 8051 C

SFR registers of the 8051 are accessible directly in 8051 C compilers by using the reg Sl.h
file. Examples 10-15 through 10-19 show how to program the serial port in 8051 C. Connect
your 8051 Trainer to the PC’s COM port and use HyperTerminal to test the operation of these

examples.

Example 10-15

Write a C program for the 8051 to transfer the letter "A" serially at 4800 baud continu-
ously, Use B-bit data and | stop bit.

Solution:

finclude <regsi.hs
void main(veoid)

{

THOD=0x23; S /uzge Timer 1,8-BIT auto-relaad
TH1=0xFA; /4800 baud rate
SOON=0x50;
TR1=1;
whnile{l}
{

SEUF="4'; fiplace value in buffer

while (TI==0) ;

TI=0;

}

Example 10-16

Write an 8051 C program to transfer the message “YES” serially at 9600 baud, 8-bit
data, 1 stop bit. Do this continuously.

Solution:

#include <reg5l.h>

void SerTx{unsigned char);

void main (void)

{
TMOD=0x20; Jfuse Timer 1,8-BIT auto-reload
TH1=0xFD; / /9600 baud rate
SCON=0x50;
TR1=1; //start timer
while{l)
{
SerTx('Y'});
SerTx('E'};
SerTx{'5"};
}
}
void SerTx({unsigned char x)
{
SBUF=x; //place wvalue in buffer
while (TI==0}; //wait until transmitted
TI=0;

}

Example 10-17

Program the 8051 in C to receive bytes of data serially and put them in P1. Set the baud
rate at 4800, B-bit data, and 1 stop bit.

Selution:

#include <regS5l.h>

void main (void)

§
unsigned char mybyte;
TMOD=0x20; //use Timer 1,8-BIT auto-reload
TH1=0xFA; J/4800 baud rate
SCCN=0x50;
TRi=1; J/etart timer
whilefl! //repeat forever
i while (RI==0) ; J/wait to receive
mybyte=SBUF; //save value
Pl=mybyte; J/write walue to port
RI=0;
}
}

Example 10-18

Write an 8051 C program to send two different strings to the serial port. Assuming that

SW is connected to pin P2.0, monitor its status and make a decision as follows:

SW = 0: send your first name

SW = 1: send your last name

Assume XTAL =11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

Solution:

#include <regS51.h>
shit MYSW=P2"0; /finput switch
void main{void)
{
unzigned char z;
unsigned char fname[]="ALI";
unsigned char lname[]="SMITH";

TMOD=0x20; J/use Timer 1,8-BIT auto-reload
TH1=0xFD; / /9600 baud rate
SCON=0x50;
TRi=1; //start timer
if (MYSW==0) //check switch
{
for{z=0;z<3;2++) J/write name
{
SBUF=fname [z] ; //place value in buffer
while (TI==0); //wait for transmit
TI=0;
}
}
else
{
for{z=0:z<5;:2++) //write name
{
SBUF=1lname (=] ; //place wvalue in buffer
while (TI==0); //wait for transmit
TI=0;
}
}

Example 10-19

Write an 8051 C program to send the two messages “Normal Speed” and “High Speed”

to the serial port. Assuming that SW is connected to pin P2.0, monitor its status and set

the baud rate as follows:

SW =0 28,800 baud rate

SW =1 56K baud rate

Assume that XTAL =11.0592 MHz for both cases.

Solution:

#include <regs5l.h>
shit MYSW=P2"0:
void main(void)

{

unsigned char z;

/{input switch

unsigned char Messl|[]="Normal Speed";
unsigned char Messz([]="High Speed";

TMOD=0%20 ;

TH1=0xFF;

SCON=0x50;

TR1=1;

if (MYSH==0)

{
for{z=0;=2<12;z++)
{

SBEUF=Messl|[z];
while (TI==0);
TI=0;

}

else
{
PCON=PCON | 0x80;
fori{z=0;z<l0;2++)
{

SBUF=Mess2[z] ;
while (TI==0};
TI=0;

'

J/use Timer 1,8-BIT autoc-reload

//28,800 for normal speed

//start timer

J/place value in buffer
J//wait for transmit

//for high speed of 56K

//place wvalue in buffer
J/wait for transmit

8051 C compilers and the second serial port

Since many C compilers do not support the second serial port of the DS89C4x0O chip, we
have to declare the byte addresses of the new SFR registers using the sfr keyword. Table 10-6
and Figure 10-12 provide the SFR byte and bit addresses for the DS89C4xQ chip. Examples
10-20 and 10-21 show C versions of Examples 10-11 and 10-13 in Section 10.4.

Notice in both Examples 10-20 and 10-21 that we are using Tinier 1 to set the baud rate for
the second serial port. Upon reset, Timer 1 is the default for the second serial port of the
DS89C4x0 chip.

Example 10-20

Write a C program for the DS89C4x0 to transfer letter “A” serially at 4800 baud
continuously. Use the second serial port with 8-bit data and 1 stop bit. We can only use Timer
1 to set the baud rate. Solution:

#include <reg5l.h>
sfr SBUF1=0xC1;
sfr SCON1=0xCO;
gbit TI1=0xC1:
vold main{void)

{
TMCOD=0x20; //fuse Timer 1 for 2nd serial port
TH1=0xFA; /74800 baud rate
SCON1=0x50; //use 2nd serial port SCON1 register
TR1=1; //start timer
while (1}
{
SEBUFl='A'; J/use 2nd serial port SBUF1l register
while (TIl==0); //wait for transmit
TIl=0;
}
}
DS89CAx0 MAN 232 e
14
TxDo (P3.1) P11 Z jﬁ'g
RDD(P30) R332 13 3 &
72 5 & >
D1 (P1.3) pA—10 T3 E
RO1(P12) | =

Example 10-21

Program the DS89C4x0 in C to receive bytes of data serially via the second serial port and
put them in PI. Set the baud rate at 9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate

generation.

Solution:

#include <regSl.h»>
2fr SRUFl=0xC1l;
sfr SCOM1=0%C0;
shit RI1=0x0;
vold main(vaid)

unsigned char mybyte;

TMOD=0x20; //use Timer 1,8-BIT autc-reload
TH1=0xFD; /9600
SCON1=0%50; //use SCON1 of 2nd serial port
TR1=1;
while (1}
{
while(RI1==0); //monitor RI1 of 2nd serial port
mybyte=SBUF1; //use SBUF1 of 2nd serial port
P2=mybyte; //place value on port
RI1=0;
}

PROGRAMMING OF A/D AND D/A CONVERTERS

Interfacing ADC to 8051

ADC (Analog to digital converter) forms a very essential part in many
embedded projects and this article is about interfacing an ADC to 8051
embedded controller. ADC 0804 is the ADC used here and before going
through the interfacing procedure, we must neatly understand how the ADC
0804 works.

ADC 0804.

ADCO0804 is an 8 bit successive approximation analogue to digital converter
from National semiconductors. The features of ADC0804 are differential
analogue voltage inputs, 0-5V input voltage range, no zero adjustment, built
in clock generator, reference voltage can be externally adjusted to convert
smaller analogue voltage span to 8 bit resolution etc. The pin out diagram of
ADCO0804 is shown in the figure below.

-/

ot f
-2
WR={3
CLEIN=—44

WTR=1°> ADCO0804
Vin(+)—6
Vin(=1=—17
AGHND =B
Vrer/219

D GHD—410

20
19
18
17
&
3
14
13
12
1

1
1

= Vee (OR Vpep)
— CLK R

— DBO (LSB)
— DB1
—DB2
— DB3
— DB4
— DBS
— DB6
— DB (MSB)

The voltage at Vref/2 (pin9) of ADC0804 can be externally adjusted to
convert smaller input voltage spans to full 8 bit resolution. Vref/2 (pin9) left
open means input voltage span is 0-5V and step size is 5/255=19.6V. Have a
look at the table below for different Vref/2 voltages and corresponding
analogue input voltage spans.

Vref/2 (pin9) (volts)

Left open

1.5

1.28

1.0

0.5

Input voltage span (volts)

0-2.56

Step size (mV)
5/255 =19.6

4/255 = 15.69
3/255=11.76

2.56/255 = 10.04

2/255 =7.84

1/255 = 3.92

Steps for converting the analogue input and reading the output from
ADC0804.

o Make CS=0 and send a low to high pulse to WR pin to start the conversion.

« Now keep checking the INTR pin. INTR will be 1 if conversion is not finished
and INTR will be O if conversion is finished.

 If conversion is not finished (INTR=1) , poll until it is finished.
« If conversion is finished (INTR=0), go to the next step.

« Make CS=0 and send a high to low pulse to RD pin to read the data from the
ADC.

The circuit initiates the ADC to convert a given analogue input , then accepts the
corresponding digital data and displays it on the LED array connected at PO. For
example, if the analogue input voltage Vin is 5V then all LEDs will glow indicating
11111111 in binary which is the equivalent of 255 in decimal. AT89s51 is the
microcontroller used here. Data out pins (DO to D7) of the ADC0804 are connected to
the port pins P1.0 to P1.7 respectively. LEDs D1 to D8 are connected to the port pins
P0.0 to PO.7 respectively. Resistors R1 to R8 are current limiting resistors. In simple
words P1 of the microcontroller is the input port and PO is the output port. Control
signals for the ADC (INTR, WR, RD and CS) are available at port pins P3.4 to P3.7
respectively. Resistor R9 and capacitor C1 are associated with the internal clock
circuitry of the ADC. Preset resistor R10 forms a voltage divider which can be used to
apply a particular input analogue voltage to the ADC. Push button S1, resistor
R11 and capacitor C4 forms a debouncing reset mechanism. Crystal X1 and
capacitors C2,C3 are associated with the clock circuitry of the microcontroller.

Program.

ORG ©©oH
MOV P1,#11111111B // initiates P1 as the input port
MAIN: CLR P3.7 // makes CS=0

SETB P3.6 // makes RD high

CLR P3.5 // makes WR low

SETB P3.5 // low to high pulse to WR for starting convers
ion

WAIT: JB P3.4,WAIT // polls until INTR=0

CLR P3.7 // ensures CS=0

CLR P3.6 // high to low pulse to RD for reading the data
from ADC

MOV A,P1 // moves the digital data to accumulator

CPL A // complements the digital data (*see the notes)

MOV PO,A // outputs the data to PO for the LEDs

SIJMP MAIN // jumps back to the MAIN program

END

Notes.

« The entire circuit can be powered from 5V DC.

« ADC 0804 has active low outputs and the instruction CPL A complements it tO
have a straight forward display. For example, if input is 5V then the output will
be 11111111 and if CPL A was not used it would have been 00000000 which is
rather awkward to see.

Interfacing DAC with 8051

n this section we will see how DAC (Digital to Analog Converter) using Intel 8051
Microcontroller. We will also see the sinewave generation using DAC.

The Digital to Analog converter (DAC) is a device, that is widely used for converting
digital pulses to analog signals. There are two methods of converting digital signals
to analog signals. These two methods are binary weighted method and R/2R ladder
method. In this article we will use the MC1408 (DACO0808) Digital to Analog
Converter. This chip uses R/2R ladder method. This method can achieve a much
higher degree of precision. DACs are judged by its resolution. The resolution is a
function of the number of binary inputs. The most common input counts are 8, 10, 12
etc. Number of data inputs decides the resolution of DAC. So if there are n digital
input pin, there are 2" analog levels. So 8 input DAC has 256 discrete voltage levels.

The MC1408 DAC (or DAC0808)

In this chip the digital inputs are converted to current. The output current is known
as l.. by connecting a resistor to the output to convert into voltage. The total current
provided by the I, pin is basically a function of the binary numbers at the input pins
Do- D, (D, is the LSB and D- is the MSB) of DAC0808 and the reference current ..
The following formula is showing the function of lo.

lout=lref(D72+D64+D58+D416+D332+D264+D1128+D0256)10ut=Iref(D72+D64
+D58+D416+D332+D264+D1128+D0256)

The I is the input current. This must be provided into the pin 14. Generally 2.0mA is
used as |

We connect the I, pin to the resistor to convert the current to voltage. But in real life
it may cause inaccuracy since the input resistance of the load will also affect the
output voltage. So practically . current input is isolated by connecting it to an Op-
Amp with R;= 5KQ as feedback resistor. The feedback resistor value can be
changed as per requirement.

Generating Sinewave using DAC and 8051 Microcontroller

For generating sinewave, at first we need a look-up table to represent the magnitude
of the sine value of angles between 0° to 360°. The sine function varies from -1 to
+1. In the table only integer values are applicable for DAC input. In this example we
will consider 30° increments and calculate the values from degree to DAC input. We
are assuming full-scale voltage of 10V for DAC output. We can follow this formula to
get the voltage ranges.

Veur = 5V + (5 xsinB)

Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in 0) sin@ Vou (Voltage Magnitude) Values sent to DAC
0 0 5 128
30 0.5 7.5 192
60 0.866 9.33 238
90 1.0 10 255
120 0.866 9.33 238

150 0.5 7.5 192

Angle(in 0) sin® Vou (Voltage Magnitude)

180 0 5
210 -0.5 2.5
240 -0.866 0.669
270 -1.0 0
300 -0.866 0.669
330 -0.5 2.5
360 0 5

Source Code

Values sent to DAC

128

64

17

17

64

128

#include<reg5l.h>
sfr DAC = 0x80; //Port PO address
void main () {

int sin valuel[lZ2] =
{128,192,238,255,238,192,128,064,17,0,17,064};

int 1i;

while (1) {
//infinite loop for LED blinking
for(i = 0; i<12; i++){

DAC = sin value[i];

Output
The output will look like this —

2 |

|

T Y e

| . : 1 1 1 1 Degrees
30 60 90 120 150 180 210 240 270 300 330 360

Interfacing Stepper Motor with 8051Microcontroller

In this section, we will see how to connect a stepper motor with Intel 8051
Microcontroller. Before discussing the interfacing techniques, we will see what are
the stepper motors and how they work.

Stepper Motor

Stepper motors are used to translate electrical pulses into mechanical movements.
In some disk drives, dot matrix printers, and some other different places the stepper
motors are used. The main advantage of using the stepper motor is the position

control. Stepper motors generally have a permanent magnet shaft (rotor), and it is
surrounded by a stator.

Stator

Stator

Normal motor shafts can move freely but the stepper motor shafts move in fixed
repeatable increments.

Some parameters of stepper motors -

e Step Angle - The step angle is the angle in which the rotor moves when one
pulse is applied as an input of the stator. This parameter is used to determine
the positioning of a stepper motor.

o Steps per Revolution — This is the number of step angles required for a
complete revolution. So the formula is 360° /Step Angle.

e Steps per Second - This parameter is used to measure a number of steps
covered in each second.

e RPM - The RPM is the Revolution Per Minute. It measures the frequency of
rotation. By this parameter, we can measure the number of rotations in one
minute.

The relation between RPM, steps per revolution, and steps per second is like below:
Steps per Second = rpm x steps per revolution / 60

Interfacing Stepper Motor with 8051 Microcontroller

Weare using Port PO of 8051 for connecting the stepper motor. HereULN2003 is
used. This is basically a high voltage, high current Darlington transistor array. Each
ULNZ2003 has seven NPN Darlington pairs. It can provide high voltage output with
common cathode clamp diodes for switching inductive loads.

The Unipolar stepper motor works in three modes.

« Wave Drive Mode - In this mode, one coil is energized at a time. So all four
coils are energized one after another. This mode produces less torque than
full step drive mode.

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

e Full Drive Mode - In this mode, two coils are energized at the same time.
This mode produces more torque. Here the power consumption is also high

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D
1 1 1 0 0
2 0 1 1 0
3 0 0 1 1
4 1 0 0 1

« Half Drive Mode - In this mode, one and two coils are energized alternately.
At first, one coil is energized then two coils are energized. This is basically a
combination of wave and full drive mode. It increases the angular rotation of
the motor

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 0 0 0
2 1 1 0 0
3 0 1 0 0
4 0 1 1 0
5 0 0 1 0
6 0 0 1 1
7 0 0 0 1
8 1 0 0 1

The circuit diagram is like below: We are using the full drive mode.

csmq_,, -mcow«,____
Qe
R2{] R | R4[| RS
4.7\q 4 AT | 47
U2
U1 g I
L ST Po04Dd 22— B ic 2 /<O§\
PO.4AD1 28 c —< '
w Po2uoz e a2 1)
XTALZ PO3IADS (22 4B 4C
X1 POSADS 2les el
: 2 % POSADS %; {1 e
RST POTIADT |2
ULN2003A
cRvETAL =3 P20AS
10uF P2 1A
P22AID
c1 c2 2 Fm= 23N [t
25k 227 3] ALE PZAAIZ 2o
= e
R1 22014 21
p27aNs |22
0 \ 3
HE IR
1 5
e el
o [p e
—5—{Pia PEATO
2 e sagmi 2
<1 Pl1e PILTE 7
——{P17 PATIRD ——
— AT3CH

Example

#include<reg5l.h>
sbit LED pin = P270; //set the LED pin as P2.0
void delay (int ms) {

unsigned int i, J;

for(i = 0; i<ms; i++){ // Outer for loop for given
milliseconds value

for(j = 0; 3< 1275; Jj++){

//execute in each milliseconds;

}
void main () {
int rot angle[] = {0x0C,0x06,0x03,0x09};
int 1i;
while (1) {
//infinite loop for LED blinking

for (i 0; i<4; i++){

PO = rot anglel[i];
delay (100) ;

8051 TIMER & |
PROGRAMMINGaIN ASSE

PROGRAMMING 8051 TIMERS

 Basic registers of the timer
- Timer 0 and Timer 1 are 16 bits
wide
- each 16-bit timer is accessed as

two separate registers of low byte
and high byte.

PROGRAMMING 8051 TIMERS

e Timer O registers

- low byte register is called TLO (Timer O low byte)
and the high byte register is referred to as THO
(Timer 0 high byte)

- can be accessed like any other register, such as A,
B, RO, R1, R2, etc.

- "MOV TLO, #4 FH" moves the value 4FH into TLO

- "MOV R5, THO" saves THO (high byte of Timer 0) in
R5

PROGRAMMING 8051 TIMERS

THO

TLO

D15 |D14|D13|D12

DIIIDIOI D9 | D8 “ D7 | D6 I D5 | D4

D3|D2|D1|D0

Timer O Registers

PROGRAMMING 8051 TIMERS

e Timer 1 registers
- also 16 bits

- split into two bytes TL1 (Timer 1
low byte) and TH1 (Timer 1 high
byte)

- accessible in the same way as the
registers of Timer O.

SECTION 9.1: PROGRAMMING 8051
TIMERS

THI

I TLI

D15 IDI4ID13 |D12

DllIDlOI D9 | DS || D7 | D6 I D5 | D4

D3ID2ID1IDO

Timer 1 Registers

PROGRAMMING 8051 TIMERS

e TMOD (timer mode) register

- timers 0 and 1 use TMOD register to set operation
modes (only learn Mode 1 and 2)

- 8-bit register
- lower 4 bits are for Timer O
- upper 4 bits are for Timer 1

- lower 2 bits are used to set the timer mode
 (only learn Mode 1 and 2)

- upper 2 bits to specify the operation
 (only learn timer operation)

PROGRAMMING 8051 TIMERS

(MSB) (LSB)
GATE C/T M1 | MO GATEI C/T N1 | MO

Timer 1 | Timer O

GATE Gating control when set. The timer/counter is enabled only while the INTx pin
is high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

C/T Timer or counter selected cleared for timer operation (input from internal
system clock). Set for counter operation (input from Tx input pin).

M1 Mode bit 1
MO Mode bit O

M1 MO MMode Operating Mode
0 0 0 13-bit timer mode

8-bit timer/counter THx with TLx as 5-bit prescaler
0 1 1 16-bit timer mode

16-bit timer/counters THx and TLx are cascaded: there is
no prescaler

1 0] 2 8-bit auto reload
8-bit auto reload timer/counter; THx holds a value that 1s
to be reloaded into TLx each time it overflows.

1 1 3 Split timer mode

TMOD Register

PROGRAMMING 8051 TIMERS

 Clock source for timer
- timer needs a clock pulse to tick

- If C/T = 0, the crystal frequency attached to the 8051 is
the source of the clock for the timer

- frequency for the timer is always 1/12th the frequency of
the crystal attached to the 8051

- XTAL = 11.0592 MHz allows the 8051 system to
communicate with the PC with no errors

- In our case, the timer frequency is 1MHz since our
crystal frequency is 12MHz

PROGRAMMING 8051 TIMERS

e Mode 1 programming
- 16-bit timer, values of 0000 to FFFFH
- TH and TL are loaded with a 16-bit initial value

- timer started by "SETB TRO" for Timer 0 and "SETB TR1"
for Timer |

- timer count ups until it reaches its limit of FFFFH
- rolls over from FFFFH to 0000H
- sets TF (timer flag)

- when this timer flag is raised, can stop the timer with
"CLR TRO" or "CLR TR1“

- after the timer reaches its limit and rolls over, the
registers TH and TL must be reloaded with the original
value and TF must be resetto 0

PROGRAMMING 8051 TIMERS

I LIl overflow
Timer 11 tlag
externa TH1|TL1 TF1
o TL1[—|TFL
pin 3.5 ‘ ,

P TF1 goes high

C/T=1 TRI whien FEEF—=>0

Timer 1 with External Input (Mode 1)

PROGRAMMING 8051 TIMERS

 Steps to program in mode 1

- Set timer mode 1 or 2

- Set TLO and THO (for mode 1 16 bit
mode)

- Set THO only (for mode 2 8 bit auto
reload mode)

- Run the timer
- Monitor the timer flag bit

In the following program, we are creating a square wave of
50% duty cycle (with equal portions high and low) on the
P1.5 bit.

Timer O is used to generate the time delay

01 MOV TMOD, #01 :Timer 0, mode 1({16-hit mode)
g2 HERE: MOV TLO.#0FZH +TLO: = FZH, the Low Ivte

03 MOV THO,#0FFH :THO = FFH, the High bvte

ge CPL P1.5 sadale F1o5

05 ACALL DELAY

06 =JMP HERE siomdk . TL.oagain

07

o8 DELAY: :delay using Timer 0O

g3 SETH TROD selari -Timsi 0

10 AGAIN: JNB TFO,AGAIN ;monitor Timer 0 flag until 1t rolls over
4 CLE TRO :stop Timer 0O

12 CLE TED :clear Timer 0 flag

i3 RET

14
15 END

PROGRAMMING 8051 TIMERS

* Finding values to be loaded into
the timer
- XTAL = 11.0592 MHz (12MHz)

- divide the desired time delay by
1.085F s (1+ s) togetn

- 65536-n = N
- convert N to hex yyxx
-set TL = xx and TH = yy

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

e T =1/50 Hz = 20 ms

e 1/2 of it for the high and low
portions of the pulse = 10 ms

*10 ms/1.085 us = 9216

e 65536 -9216 = 56320 In decimal
= DCOOH

e TL =00 and TH = DCH

 The calculation for 12MHz crystal
uses the same steps

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

o1 MOy TMOD,#10H sErmer: 1 mode 1 fI6-Li1t]

2 AGAIN: MOV TL1.#00 *TL1 =00, Low byvis

03 MOV THI1,+#0DCH +TH1 = 00CH: High birts

04

05 SETE TR1 +SEatt Timer]

0 BACE: JHWB TF1.BACK :stay until timer rolls over
gz CLR TR1 :stop Timer 1

gg CPL P2.3 seompliment P23 th gat hi. lo
g8 CLE TF1 solear Tiner 1 :fFlag

10 5JMP AGAIN :reload timer since

11 :mode 1 1s not auto reload

12
13 EMND

PROGRAMMING 8051 TIMERS

 Generating a large time delay

- size of the time delay depends
e crystal frequency
e timer's 16-bit register in mode 1

- largest time delay is achieved by
making both TH and TL zero

Examine the following program and find the time
delay in seconds. Exclude the time delay due to the
Instructions in the loop.

0 MOV TMOD, #10H 'Timer 1, mode 1(16-bit)
MOV R3, %200 ccounter for multiple delay

i i

MOV TH1, #01H 'TH1 = 01, High byte

0
0
M AGAIN: MOV TL1,#08H TL1 = 08, Low byte
05
6 SETB TR1 retart Timer 1

o BACK: JNB TF1,BACK stay until timer rolls over
® CLR TRI ;8top Timer 1

© CLR TFl clear Timer 1 flag

10 DINZ R3,AGAIN '1f R3 not zero then

1 reload timer

12 END

Examine the following program and find the time delay in
seconds. Exclude the time delay due to the instructions in the
loop.

o MOV TMCD, #10H CTimer 1, mode 1[16-bir)

2 MOW R3,#200 ;counter for multiple delay
03

4 AGAIN: MOV TL1,#USH TLL1 = @&, Low byte

s MOV TH1, #01H CTHLE = Bl Highe bybs

e SETE TR1 cavart Timer 1

o7 BACK:. JNB TF1,BACK etay until Fimer Tolls aver
;8 CLE TR1 arteE Timer A

1 CLR TF1 ;clear Timer 1 flag

10 DINZ R3, AGAIN : E K3 ngt Zerw then

11 reload timer
iz END

13

"TH-TL=0108H=264 1in decimal

5 65536-264=65272

s 6527 2u] . 08bug=Y0.820ms

17 . 200x70.820me=14.164024=
18

PROGRAMMING 8051 TIMERS (for
iInformation only)

e Mode O
- works like mode 1
- 13-bit timer instead of 16-bit

- 13-bit counter hold values 0000 to
1FFFH

- when the timer reaches its
maximum of 1FFFH, it rolls over to
0000, and TF is set

PROGRAMMING 8051 TIMERS

e Mode 2 programming
- 8-bit timer, allows values of 00 to FFH
- TH is loaded with the 8-bit value
- a copy is given to TL
- timer is started by ,"SETB TRO" or "SETB TR1“
- starts to count up by incrementing the TL register
- counts up until it reaches its limit of FFH
- when it rolls over from FFH to 00, it sets high TF
- TL is reloaded automatically with the value in TH
- To repeat, clear TF
- mode 2 is an auto-reload mode

PROGRAMMING 8051 TIMERS

e Steps to program in mode 2

. load TMOD, select mode 2

. load the TH

. start timer

. monitor the timer flag (TF) with

A WNRK

IIJNB)I
5. get out of the loop when TF=1
6. clear TF
7.go back to Step 4 since mode 2 is

auto-reload

PROGRAMMING 8051 TIMERS

e Assemblers and negative
values

- cah let the assembler calculate
the value for TH and TL which
makes the job easier

- "MOV TH1, # -100", the

assembler will calculate the -100
= 9CH

- "MOV TH1,#high(-10000) "
- "MOV TL1,#low(-10000) "

COUNTER PROGRAMMING

. C/T bit in TMOD register

C/T bit in the TMOD regqister decides the source of the clock for
the timer

- C/T = 0, timer gets pulses from crystal

- C/T =1, the timer used as counter and gets pulses from
outside the 8051

- C/'I;I—151 the counter counts up as pulses are fed from pins 14
an

- pins are called TO (Timer O input) and T1 (Timer 1 input)
- these two pins belong to port 3

- Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and
the counter counts up for each clock pulse coming from that

pin
- Timer 1, when C/T = 1 each clock pulse coming in from pin
P3.5 makes the counter count up

COUNTER PROGRAMMING

Pin Port Pin Function Description
14 P34 T0 Timer/Counter 0 external input
15 P3.5 T1 Timer/Counter 1 external mput
(MSB) (LSB)
GATE | C/T MI_| Mo T GATE | C/T M1 | MO
Timer 1 Timer O

Port 3 Pins Used For Timers 0 and 1

PROGRAMMING 8051 TIMERS

J LI L overflow
Timer 01 flag
externa THO| TLO TFO
— TLO
pin 3.4 ‘

_ TFO goes high
C/T=1 TRO when FFEF =0

Timer O with External Input (Mode 1)

COUNTER PROGRAMMING

[L1 overflow flag

Timer 1
external —{1]
mput |_

pin 3.5

reload

[THI |

C/T =1 TF1 goes high
when FF =0
Timer 1 with External Input (Mode 2)

SECTION 9.2: COUNTER
PROGRAMMING

I LI L overflow flag
Timer |)
external | TL1 |
mput |_
pin 3.5 TR 1 reload

[THI |

C/T=1 TF1 goes high
when FF =0

COUNTER PROGRAMMING

For Timer 0

SETB TRO = SETB TCON .4
CLR TRO = CLR TCONA4
SETB TFO = SETB TCON.5
CLR TFO = CLR TCON.5
For Timer 1
SETB TRl = SETB TCON.6
CLR TRl = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1 = CLR TCON.7

TCON: Timer/Counter Control Register

TF1 | TR1 | TF0 | TRO | IEI IT1 IE0 ITO

Port 3 Pins Used For Timers 0 and 1

COUNTER PROGRAMMING

e TCON register
- TRO and TR1 flags turn on or off the timers

- bits are part of a register called TCON (timer
control)

- upper four bits are used to store the TF and TR
bits of both Timer 0 and Timer 1

- lower four bits are set aside for controlling the
interrupt bits

- "SETB TRI" and "CLR TRI“
- "SETB TCON. 6" and "CLR TCON. 6“

COUNTER PROGRAMMING

For Timer 0

SETB TRO = SETB TCON.4
CLR TRO = CLR TCONA4
SETB TFO = SETB TCON.5
CLR TFO = CLR TCON.5
For Timer 1
SETB TRl = SETB TCON.6
CLR TRl = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1 = CLR TCON.7

TCON: Timer/Counter Control Register

TF1 | TRI | TF0 | TRO | IEI IT1 IE0 ITO

Equivalent Instructions for the Timer Control Register (TCON

COUNTER PROGRAMMING

e The case of GATE =1 in TMOD

- GATE = 0, the timer is started with
instructions "SETB TRO" and "SETB
TR1“

- GATE = 1, the start and stop of the
timers are done externally through
pins P3.2 and P3.3

- allows us to start or stop the timer
externally at any time via a simple
switch

COUNTER PROGRAMMING

osc)lcgliﬁ' .BI._TOH ' +12 —
C/T=0

TOIN
Pin 3.2
TRO hY
L/
I~
Gate | P 3_
INTO Pin
Pin 3.2

Timer/Counter O

COUNTER PROGRAMMING

XTAL >
OSCILLATOR +12 =
CT=0

Timer/Counter 1

Assuming that clock pulses are fed into pin T1, write a
program for counter 1 in mode 2 to count the pulses and
display the state of the TL1 count on P2. (for information
only)

01 MOV TMOD, #01100000B ;counter 1, mode 2,.CrT=1
02 rexternal pulses

03 MOV THI1.,#0 sxlear THT

gi. SETE P3.5 :make T1 input

08 AGAIN: SETH TE1 :start the counter

06 BaCE: MOV A,TL1 sget copv af count TL1
07 MOV P2.A sdisplay 16 oo port 2
0 JWE TF1,BACK :keep doing 1t 1f TF=0
g3 CLR TR1 sStap The Fouhnter 1

i CLR TF 1 ;make TEF=0

11 =SJMP AGATH ;keep doing 1t

12
13 EHND
14

Interrupts vs. Polling

 An interrupt is an external or
internal event that interrupts the
microcontroller

- To Inform It that a device needs its
service

* A single microcontroller can serve
several devices by two ways “

- Interrupts

e Whenever any device needs its servi
the device notifies the microcontrolle
by sending it an interrupt signal

e Upon receiving an interrupt signal, t
mMmicrocontrallar intarriinte whatravvar i

Interrupts vs. Polling (cont.)

- The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt
handler

- Polling

The microcontroller continuously
monitors the status of a given device
eX. JNB TF, target

When the conditions met, it performs the
service

After that, it moves on to monitor the
next device until every one is serviced

Polling can monitor the status of several devic
and serve each of them as certain conditions
met

The polling method is not efficient, sin

I I PR o B PR B [I |

Interrupts vs. Polling (cont.)

 The advantage of interrupts is:

- The microcontroller can serve many
devices (not all at the same time)

e Each device can get the attention
of the microcontroller based on
the assigned priority

e For the polling method, it is not
possible to assign priority since it
checks all devices in a round-rob
fashion

- The microcontroller can also igno
(mask) a device request for servi

a Thimc i~ mnAtr m"Aac~iIl”RlA FArr FlaAa A~AAdL

Interrupt Service Routine

 For every interrupt, there must be
an interrupt service routine (ISR),
or interrupt handler
- When an interrupt is invoked, the

microcontroller runs the interrupt
service routine

- There is a fixed location in memory
that holds the address of its ISR
e The group of memory locations set

aside to hold the addresses of ISRs |
called interrupt vector table

Steps in Executing an

Interrupt
e Upon activation of an interrupt,

the microcontroller goes through:

- |t finishes the instruction it is
executing and saves the address of
the next instruction (PC) on the
stack

- |t also saves the current status of all
the reqgisters internally (not on th
stack)

-1t jumps to a fixed location
memory, called the interrupt ve
table, that holds the address of

1D

i
!

Steps in Executing an
Interrupt (cont.)

-t gets the address of the ISR from the
Interrupt vector table and jumps to ISR

e [t starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
Interrupt)

-Upon executing the RETI instruction,
the microcontroller returns to the plac
where it was interrupted

e |t gets the program counter (PC) address
from the stack by popping the top two byt
of the stack into the PC

e |t starts to execute from that address

Six Interrupts in 8051

e Six Interrupts are allocated as follows
- Reset - power-up reset

- Two interrupts are set aside for the timers:

* One for timer O and one for timer 1

- Two interrupts are set aside for hardware
external interrupts

e P3.2 and P3.3 are for the external hardware
interrupts INTO (or EX1), and INT1 (or EX2)
- Serial communication has a single

interrupt that belongs to both receive and
transfer

Enabling and Disabling an
Interrupt

 Upon reset, all interrupts are disabled
(masked)

- None will be responded to by the
microcontroller if they are activated

e The interrupts must be enabled by software
In order for the microcontroller to respond to
them
- There iIs a reqister called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking)
the interrupts

D7

DO

EA - ET2 ES ETI | EXI ETO | EXO0

EA IE.7 Disables all interrupts. If EA = (), no interrupt is acknowledged.
If EA = I, each interrupt source is individually enabled or disabled
by setting or clearing its enable bit.

- IE.6 Not implemented, reserved for future use *

ET2 IES Enables or disables Timer 2 overflow or capture interrupt (8052 only).

ES IE4 Enables or disables the serial port interrupt.

ET1 IE3 Enables or disables Timer | overflow interrupt.

EX1 [E2 Enables or disables external interrupt 1.

ETO IE.I Enables or disables Timer () overflow interrupt.

EX0 IE0 Enables or disables external interrupt 0.

*¥User software should not write 1s to reserved bits. These bits may be used
in future flash microcontrollers to invoke new features.

Figure 11-2. 1E (Interrupt Enable) Register

Enabling and Disabling an
Interrupt (cont.)

* To enable an interrupt, we take
the following steps:

- Bit D7 of the IE register (EA) must
be set to high to allow the rest of
register to take effect

- The value of EA

e If EA = 1, interrupts are enabled and
will be responded to if their
corresponding bits in IE are high

e If EA = 0, no interrupt will be respon
to, even if the associated bit in the |
register is high

Timer Interrupts

 The timer flag (TF) is raised when the
timer rolls over

- In polling TF, we have to wait until the
TF is raised

 The microcontroller is tied down while
waiting for TF to be raised, and can not do
anything else

- Using interrupts to avoid tying down the
controller

e If the timer interrupt in the IE register is
enabled, whenever the timer rolls over, TF
raised

Timer Interrupts (cont.)

 The microcontroller is interrupted in
whatever it is doing, and jumps to the
interrupt vector table to service the ISR

* In this way, the microcontroller can do other
until it is notified that the timer has rolled
over

TFO Timer 0 Interrupt Vector TF1 Timer 1 Interrupt Vector

e — H
I umps to BoorH .T umps to Bo1

External Hardware

Interrupts
* The 8051 has two external
hardware interrupts
- Pin 12 (P3.2) and pin 13 (P3.3) of
the 8051

e Desighated as INTO and INT1
e Used as external hardware interrupts

- The interrupt vector table locations
0O003H and 0013H are set aside for
INTO and INT1

- There are two activation levels fo
the external hardware interrupts

e Level trigged

Level-Triggered Interrupt

 INTO and INT1 pins are normally
high
- If a low-level signal is applied to
them, it triggers the interrupt
 The microcontroller stops whatever it is

doing and jumps to the interrupt vector
table to service that interrupt

 The low-level signal at the INT pin mus
be removed before the execution of t
last instruction of the ISR, RETI

- Otherwise, another interrupt will be
generated

* This is called a level-triggered or le
activvated interriint and i€ the defariil

Sampling Low Level-
Triggered Interrupt

e P3.2 and P3.3 are used for normal
/O

- Unless the INTO and INT1 bits in the
IE register are enabled

e After the hardware interrupts are
enabled, the controller keeps sampling
the INTn pin for a low-level signal once
each machine cycle

 The pin must be held in a low state u
the start of the execution of ISR

- If the INTn pin is brought back to a logic
high before the start of the execution of
there will be no interrupt

e |lF INTNn nin ic laft at A loAaic low afrar

Sampling Low Level-
Triggered Interrupt (cont.)

 To ensure the activation of the
hardware interrupt at the INTn pin,

- The duration of the low-level signal
Is around 4 machine cycles, but no
more

e This is due to the fact that the level-
triggered interrupt is not latched

* Thus the pin must be held in a low sta
L 1 MC

“ > 4 machine cycles

To INTO orx
1.085us INT1 pins

4 % 1.0851us

note: On reset. ITO (TCON.0) and IT1 (TCON.2) are both
low. making external interrupt level-triggered

Edge-Triggered Interrupt

 To make INTO and INT1 edge-
triggered interrupts, we must
program the bits of the TCON
register

- The TCON register holds the ITO and
IT1 flag bits that determine level- or
edge-triggered mode of the
hardware interrupt

e |ITO and IT1 are bits DO and D2 of TCO

- They are also referred to as TCON.O and
TCON.2 since the TCON register is bit-
addressable

D7 D0

TFI [TRI] TF0 | TRO J 1ET [ITI IE0 | 170

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1
overflows. Cleared by hardware as the processor vectors to
the interrupt service routine.

TR1 TCON.6 Timer | run control bit. Set/cleared by software to turn
timer/counter | on/off.

TFO TCON.S Timer 0 overflow flag. Set by hardware when timer/counter 0
overflows. Cleared by hardware as the processor vectors to
the service routine,

TRO TCONA4 Timer O run control bit. Set/cleared by software to turn
timer/counter 0 on/off.

IE1 TCON.3 External interrupt 1 edge flag. Set by CPU when the
external interrupt edge (H-to-L transition) 1s detected.
Cleared by CPU when the interrupt is processed.
Note: This flag does not latch low-level
triggered interrupts.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to
specify falling edge/low-level triggered external mnterrupt.

IE0 TCON.I External interrupt 0 edge flag. Set by CPU when external
interrupt (H-to-L transition) edge is detected. Cleared by CPU
when interrupt is processed. Note: This flag does not
latch low-level triggered interrupts.

IT0 TCON.O Interrupt 0 type control bit, Set/cleared by software to specify
falling edge/low-level triggered external interrupt.

Figure 11-6. TCON (Timer/Counter) Register (Bit-addressable)

Sampling Edge-Triggered
Interrupt

 The external source must be held
high for at least one machine
cycle, and then held low for at
least one machine cycle

- The falling edge of pins INTO and
INT1 are latched by the 8051 and
are held by the TCON.1 and TCON.3
bits of TCON register

e Function as interrupt-in-service flags

e It indiratec that the interriint ic hain
Minimum pulse duration to
1 MC 1 MC

detect edge-triggered P o | .
interrupts XTAL=11.0592MHz 1.085us 1.085us

roacnnndad Ftn 1intil thic carmn/icea 1c finichoe

Sampling Edge-Triggered
Interrupt (cont.)

e When the ISRs are finished,
TCON.1 and TCON.3 are cleared

- The interrupt is finished and the
8051 is ready to respond to another
Interrupt on that pin

e During the time that the interrupt
service routine is being executed, the
INTNn pin is ignored, no matter how
many times it makes a high-to-low
transition

- RETI clears the corresponding bit
TCON register (TCON.1 or TCON.3

e There is no heed for instruction CIL R

Serial Communication Interrupt

e Tl (transfer interrupt) is raised when
the stop bit is transferred
- Indicating that the SBUF register is
ready to transfer the next byte
e R| (received interrupt) is raised when
the stop bit is received
- Indicating that the received byte needs

to be picked up before it is lost (overrun
by new incoming serial data

Rl and Tl Flags and

Interrupts
e In the 8051 there is only one

interrupt set aside for serial
commuhnication
- Used to both send and receive data

- If the interrupt bit in the IE register
(IE.4) is enabled, when Rl or Tl is
raised the 8051 gets interrupted
and jumps to memory location
0023H to execute the ISR

S T P T I ol o Y T B 1 i ~ T —~
'I"u_ __\""-\.__

H i | \ \

ET i___ﬁ./

Serial interrupt is invoked by TI or RI flags

0023H

Use of Serial COM in 8051

 The serial interrupt is used mainly
for receiving data and is never
used for sending data serially

- This is like getting a telephone call
In which we need a ring to be
notified

- If we need to make a phone call
there are other ways to remind
ourselves and there is no need for
ringing

- However in receiving the phone c
we must respond immediately no

Interrupt Flag Bits

 The TCON regqister holds four of
the interrupt flags in the 8051

« The SCON register has the Rl and
Tl flags

Table 11-2: Interrupt Flage Bits for the 8051/52

Interrupt Ilag SFR Register Bit
External 0 [EO TCON.I]

External |] TCONJ

Timer 0 TFO TCONS

Timer | TF1 TCON.7

Serial port Tl SCON.1

Timer 2 TF2 T2CON.7 (AT89C52)

Timer 2 EXF2 T2CON.6 (ATR9CS2)

Interrupt Priority

* When the 8051 is powered up,
the priorities are assignhed

- In reality, the priority scheme is
nothing but an internal polling
seguence in which the 8051 polls
the interrupts in the sequence listed

Table 11-3: 8051/52 Interrupt Priority Upon Reset

Highest to Lowest Priority

External Interrupt 0 (INTO)
Timer Interrupt 0 (TFO)
External Interrupt 1 (INTT)
Timer Interrupt 1 (TF1)
Serial Communication (RI+ TI)

Timer 2 (8052 only) TF2

Interrupt Priority Register (Bit-addressable)

PTZ2 | PS

PS

P11
PX1
PTO
PX0

1P 7
IP.6
1P.5
IP.4
IP.3
IP.2
1P.1
IP.0

Reserved

Reserved

Timer 2 interrupt priority bit (8052 only)
Serial port interrupt priority bit

Timer 1 interrupt priority bit

External interrupt 1 priority bit

Timer O interrupt priority bit

External interrupt O priority bit

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

Iriggering Interrupt by
Software

e To test an ISR by way of simulation
can be done with simple instructions
to set the interrupts high

- Thereby cause the 8051 to jump to the
interrupt vector table

- eX. If the |IE bit for timer 1 is set, an
instruction such as SETB TF1 will
interrupt the 8051 in whatever it is
doing and will force it to jump to th
interrupt vector table

e We do not need to wait for timer 1 go r
over to have an interrupt

CONTENT BEYOND SYLLABUS

SL. | TOPIC PO-PSO MAPPING

NO

1 80286 MICROPROCESSOR PO1,P0O2,PO3,PO4,PO5,PO6,PO7,PO8,POY,PO10,P
012,PS0O1,PSO2

2 STM32H7 PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO8,PO9,PO10,P

MICROCONTROLLERS

012,PS0O1,PSO2

80286 MICROPROCESSOR

80286 Microprocessor is a 16-bit microprocessor that has the ability to execute 16-
bit instruction at a time. It has non-multiplexed data and address bus. The size of
data bus is 16-bit whereas the size of address bus is 24-bit.

It was invented in February 1982 by Intel. 80286 microprocessor was basically an
advancement of 8086 microprocessor. Further in 1985, Intel produced upgraded
version of 80286 which was a 32-bit microprocessor.

Now the question arises what are the factors that make 80286 more advantageous
than 8086 microprocessor?

« It has non-multiplexed address and data bus that reduces operational speed.

o The addressable memory in case of 80286 is 16 MB.

o It offers an additional adder for address calculation.

« 80286 has faster multipliers that lead to quick operation.

« The performance per clock cycle of 80286 is almost twice when compared with
8086 or 8088.

Operating modes of 80286 microprocessor

80286 operates in two modes:

Modes of
Operation of
80286
Microprocessor

Protected
virtual-
address mode

Real address
mode

In real address mode, this microprocessor acts as a version of 8086 which is quite
faster. Also without any special modification, the instruction programmed for 8086
can be executed in 80286. It offers memory addressability of 1 MB of physical

memory.

https://electronicsdesk.com/microprocessor.html
https://electronicsdesk.com/8086-microprocessor.html

The protected virtual-address mode of 80286 supports multitasking because
multiple programs can be executed using virtual memory. This mode of 80286
offers memory addressability of 16 MB of physical memory along with 1 GB of
virtual memory.

As using virtual memory, space for other programs can be saved. Sometimes bulky
programs also do exist that cannot be stored in physical memory, so virtual
memory is utilized in order to execute large programs.

This mode is used in 80286, so that in case of memory failure in real address
mode, it can stay in protected manner.

What is virtual memory?

Virtual memory is that part of hard disk which can be utilized for storing large
instructions inside the system. This extra memory can be addressed by the
computer other than the physical memory.

When there exists an instruction that is to be loaded in the memory but whose size
Is greater than the provided physical memory. Then some part of hard disk is used
in order to store that instruction, which is known as virtual memory.

Architecture of 80286 Microprocessor

The figure below shows the architectural representation of 80286 microprocessor:

ADDRESS UNIT

‘Address latches LAO to Az

and drivers
Pre- Exmnsio; 152D
Segment | fetcher interface Hmﬁ[::l;fc'('

........... Bus Control
Segment Data Trz
sizes

Segment
limit
checker

Do to D5

Decoded |,
Instruction | ABEN
Queue |[EEEEES

EXECUTION UNIT f : INSTRUCTION UNIT

| Block Diagram of 80286 Microprocessor |

Electronics Desk AS

we have already mentioned earlier that it is a 16-bit microprocessor thus holds a
16-bit data bus and 24-bit address bus. Also, unlike the 8086 microprocessor, it
offers non-multiplexed address and data bus, which increases the operating speed
of the system.

80286 is composed of nearly around 125K transistors and the pin configuration has
a total of 68 pins.

The CPU, central processing unit of 80286 microprocessor, consists of 4 functional
block:

o Address Unit

o Bus Unit

« _Instruction Unit

« Execution Unit

Firstly, the physical address from where the data or instruction is to be fetched is
calculated, by the address unit. Once the physical address is calculated then the
calculated address is handed over to the bus unit. More specifically we can say,
that the calculated address is loaded on the address bus of the bus unit.

This address specifies the memory location from where the data or instruction is to
be fetched. The fetching of data through the memory is done through the data bus.
For faster execution of instruction, the BU fetches the instructions in advanced
from the memory and stores them in the gueue.

This is done through the bus control module. As we have discussed that the
prefetched instructions are stored in a 6-byte instruction queue. This instruction
gueue then further sends the instruction to the instruction unit.

The instruction unit on receiving the instructions now starts decoding the
instruction. As instructions are stored in prefetched gueue thus the decoder
continuously decodes the fetched instructions and stores them into decoded
instruction queue.

Now after the instructions gets decoded then further these are needed to be
executed. So, the instructions from decoded instruction gueue are fed to

the execution unit. The main component of EU is ALU i.e., arithmetic and logic
unit that performs the arithmetic and logic operations over the operand according
to the decoded instruction.

Once the execution of the instruction is performed then the result of the operation
i.e., the desired data is send to the register bank through the data bus.

As we have already discussed that 80286 is just a modified version of 8086. The
register set in 80286 is same as that of 8086 microprocessor.

. |t holds 8 general purpose registers of 16 bit each.

« It contains 4 segment reqister each of 16-bit.

« Also has status and control register and instruction pointer.
Interrupt of 80286 Microprocessor

We know that whenever an interrupt gets generated in a system, then the execution
of the current program is stopped and the execution gets transferred to the new
program location where the interrupt is generated.

But once the interrupt gets executed then then in order to get back to the original
program, its address as well as machine state must be stored in the stack. Basically
there exist 3 cateqgories of interrupt in 80286 microprocessor:

o External interrupt (Hardware interrupt)

o INT instruction interrupt (Software interrupt)

- Internally generated interrupt due to some exceptions

External or hardware initiate interrupt are those interrupts that gets generated due
to an external input. And are basically of two types:

1. Maskable interrupt

2. Non-maskable interrupt

Sometimes when multiple programs are allowed to be executed in a system, then
this leads to generation of INT instruction, and such an interrupt is known

as software interrupt.

Another interrupt in 80286 exist due to some unusual conditions or situations
generated in the system that leads to prevention of further execution of the current
instruction.

So, this is all about the modes of operation, architecture and interrupts of 80286
MIiCroprocessor.

STM32H7, the Most Powerful Cortex-
M7 MCU, Breaks the 2000-point
Threshold in CoreMark

The STM32H7 series of microcontrollers (MCU) made history today by becoming the most
powerful implementation of the ARM® Cortex®-M7 processor for the embedded market. It is more
than twice as fast as the STM32F7 series, the previous STM32 flagship series, meaning that its core
frequency of 400 MHz has enabled ST to become the first ever to reach 2010 points in CoreMark
with a Cortex-M MCU.

This is possible because ST is the first to have shrunk its M7 implementation from a 90 nm process
node to 40 nm. Media outlets have recently reported that some manufacturers have started or are
about to start mass producing SoCs in 10 nm. However, it is important to understand that these
components only have digital circuits, unlike the embedded MCU from ST, which includes digital
circuitry, Flash memory, and analog components. Hence, these structures are much more complex
than typical mainstream components and thus require more complex processes. Therefore, the 40 nm
node used today is not only groundbreaking but the gateway to a masterful implementation of the
Cortex-M7, and although we can’t enumerate all the great updates or optimizations found in the
STM32H7 in one single post, we’ve decided to focus on some of the reasons why its performance

sets new records.

Three Domains, Memory-Packed

"

Hagh Pracessing Dons ._:'
S i3IV

N

The Three Domains of the STM32H7 (Click to Enlarge)

To optimize the STM32H?7, its architecture has been divided into three domains. Very simply,

the first one (D1) includes the core with its cache, Flash memory and high bandwidth peripherals like

https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html?icmp=tt4249_gl_pron_oct2016&querycriteria=productId=LN2033
https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.12.13-AM.jpg

the module to drive a screen or the Chrom-Art graphics engine. D2, the connectivity domain, groups
low-speed peripherals like USB, the cryptographic accelerator and the SD/MMC2 unit for storage.
Finally, D3, the batch acquisition mode domain, is responsible for some of the most fundamental
aspects of the MCU like its reset and clock control as well as ADCs, GPI10O, RTC, the chip’s power
management and a basic DMA (BDMA) controller.

This structure allowed ST to design a flexible and efficient architecture that packs a massive internal
memory compared to some STM32F7 series. For instance, the L1 Cache is now four times bigger
with 16 KB for instructions and the same amount for data. ST also included a total of 1 MB of
SRAM and 2 MB of Flash, which is three times and twice as much respectively as the previous
generation. However, instead of using a single block of SRAM, that would only benefit a certain
domain, the STM32H7 placed various amounts at different locations to make the memory more

versatile.

Concurrent Access

Embedded memories

Cortex-M7
400 MHz
MPU
ETM

Upto
864KB byte RAM

with ECC
2x16KB Cache

4KB Bckup RAM 1 192KB RAM TCM

Master OMA+ [4KB DeooarAm |l With ECC
2xDMA + BDMA

Memory Interfaces

Accelerators FMC (SDRAM, NOR, NAND)

Q-SPI dual mode
2xSDISDIO/MMC

Peripherals
alog
\\) Connectivity

Memory Integration and Connectivity in the STM32H7

The D1 domain obviously holds the largest amount of SRAM. The core has a total of 192 KB of
TCM SRAM (64 KB I-TCM, optimised for instructions and 128 KB D-TCM, optimised for data),
which acts as an extension to the L1 cache. It has the same performance but is addressable. This
means that TCM RAM can be accessed by the core with no latency and developers can specifically
place information that needs to be deterministically retrieved to perform time-critical routines. The
biggest chunk of SRAM (512 KB) is in the first domain because it contains the most computing

https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.44.10-AM.jpg

intensive aspects of the architecture. Finally, D2 and D3 offer a quick access to their SRAM by the
peripherals and other modules on the chip.

This organization has the great advantage of providing concurrent memory access, meaning that
information can be fetched or stored in the different chunks of SRAM at the same time and by
different domains, greatly improving the efficiency of the architecture. This is extremely important as
embedded MCUs must often handle computationally intensive tasks, like running graphics and
audio, while talking to an interface like a USB port to ensure that there is no disruption in the data

transfer.

Optimized Memory and FPU

Another great feature stemming from the increased computational power of the STM32H7 series is
the ability to use ECC SRAM and Flash. The speed increase compared to the STM32F7 series is so
high that ST now has the computational resources to add error correction and still break performance
records. By providing ECC, ST not only ensures data integrity, but also improves data retention in
the Flash.

Another example of an architectural decision motivated by the needs of ST’s customers was the use
of a double precision (FP64) floating point unit. The need for such a pipeline may not always be
obvious, but some of the products that will benefit the most from the STM32H7 series need to
perform DSP-type computations. For instance, an embedded system that monitors a power grid and
will need to compute fast Fourier Transform algorithms, or a connected device that will run a precise

GPS system will rely heavily on double precision computations.

Power Saving Features and So Much More

in run mode

pAMIHZ

500 —

o

STM32F7 STM32H7

Power Savings in the STM32H7

It is impossible to offer a comprehensive list of all the features and optimizations brought by the
STM32H7 series in a single blog post. We haven’t even touched on the amazing power consumption
optimizations that are offered by this three-domain architecture. For instance, it is possible to put D1
and D2 in a very low-powered standby mode (7uA) while D3 continues to capture data in its SRAM
without needing to wake up the other domains, therefore greatly saving energy. There’s also a
complex and elaborate clock-control scheme to ensure that different parts of the architecture run at

varying speeds in order to further improve the MCU’s efficiency.

The STM32H7 series also builds on the previous generation by adding 10 more communication
peripherals for a total of 35, it still offers cryptographic and hashing hardware acceleration, and
remains pin to pin as well as software compatible with the STM32F7 series. The record-breaking
STM32H7 series is sampling today to specific partners, and will be in mass production in Q2 2017.
At this time, ST will have updated the mbed development platform to ensure developers can take full
advantage of this groundbreaking architecture.

https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.42.20-AM.jpg

	MRT 206 _MICROPROCESSOR & EMBEDDED SYSTEMS

