
NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHATRONICS ENGINEERING

COURSE MATERIALS

MRT206 MICROPROCESSOR AND EMBEDDED SYSTEMS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

 Established in: 2013

 Course offered: B.Tech Mechatronics Engineering

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

To develop professionally ethical and socially responsible Mechatronics engineers to serve the

humanity through quality professional education.

DEPARTMENT MISSION

1) The department is committed to impart the right blend of knowledge and quality

education to create professionally ethical and socially responsible graduates.

2) The department is committed to impart the awareness to meet the current challenges in

technology.

3) Establish state-of-the-art laboratories to promote practical knowledge of mechatronics to

meet the needs of the society

PROGRAMME EDUCATIONAL OBJECTIVES

I. Graduates shall have the ability to work in multidisciplinary environment with good

professional and commitment.

II. Graduates shall have the ability to solve the complex engineering problems by applying

electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in

their profession.

III. Graduates shall have the ability to lead and contribute in a team with entrepreneur skills,

professional, social and ethical responsibilities.

IV. Graduates shall have ability to acquire scientific and engineering fundamentals necessary

for higher studies and research.

PROGRAM OUTCOME (PO’S)

Engineering Graduates will be able to:

PO 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO 2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO 3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO 4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO 7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO 9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO 10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO 11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO 12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME(PSO’S)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by

integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering

problem related to instrumentation, control, automation, robotics and provide solutions.

MRT206 MICROPROCESSOR &
EMBEDDED SYSTEMS

CATEGORY L T P CREDIT
PCC 3 1 0 4

Preamble:

The Purpose of the course is to provide the students the knowledge of Microprocessors,
Microcontroller and embedded systems. This course is emphasis on architecture,
Programming and system design of 8085 microprocessor and 8051 microcontrollers. The
course is intended for making the basic knowledge in Embedded systems, Embedded C and
development tools.

Prerequisite:

MRT203 DIGITAL AND ANALOG CIRCUITS

Course Outcomes: After the completion of the course the student will be able to

CO 1 Understand the basic concepts of 8085 microprocessor
CO 2 Understand the basic concepts of 8085 interfacing with input output devices and

memory device
CO 3 Understand the overview of an Embedded Systems
CO 4 Interpret the basic concepts of 8051 microcontroller
CO 5 Interface peripheral devices with 8051 microcontrollers
CO 6 Write C/Assembly Program for a microcontroller

Mapping of course outcomes with program outcomes

 PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

CO
1

3 2 2 2 3 1 3

CO
2

3 3 3 3 3 1 3

CO
3

3 2 2 2 1 1 3

CO
4

3 2 2 2 1 1 3

CO
5

3 3 3 3 3 1 3

CO
6

3 3 3 3 3 1 3

Assessment Pattern

Bloom’s Category Continuous Assessment
Tests

End Semester Examination

MECHATRONICS

1 2
Remember 10 10 10
Understand 20 20 20
Apply 20 20 70
Analyse
Evaluate
Create

Mark distribution

Total
Marks

CIE ESE ESE
Duration

150 50 100 3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks
Continuous Assessment Test (2 numbers) : 25 marks
Assignment/Quiz/Course project : 15 marks

End Semester Examination Pattern: There will be two parts; Part A and Part B. Part A
contain 10 questions with 2 questions from each module, having 3 marks for each question.
Students should answer all questions. Part B contains 2 questions from each module of which
student should answer any one. Each question can have maximum 2 sub-divisions and carry
14 marks.

Course Level Assessment Questions

Course Outcome 1 (CO1):

1. Describe various interrupt sources on a 8085 processor

2. List the various jump instructions by 8085 processor

3. Develop a assembly program to sort N number in ascending order

Course Outcome 2 (CO2)

1. State the functionality of Program counter in a microprocessor

2. Describe memory interface in 8085 processor

3. Define the instruction cycle for an 8085 processor

Course Outcome 3(CO3):

MECHATRONICS

1. List the various tools used in embedded systems development

2. Differentiate a Microprocessor and Microcontroller

3. Describe the features and characteristics of embedded systems

Course Outcome 4 (CO4):

1. Describe 8051 architecture with a neat block diagram.

2. Illustrate Memory organization in 8051 microcontrollers.

3. Describe addressing modes of 8051 with example

Course Outcome 5 (CO5):

1. Show the program for generating 1 KHz signal

2. Demonstrate the working of serial peripheral in 8051

3. Design a system to actuate a stepper motor to 45 degree clock wise

Course Outcome 6 (CO6):

1.Show the program to add two 16-bit number using 8051 controllers

2. Write a C program to send string “Hello” through serial port

3. Demonstrate bit manipulating instruction with example

Model Question paper

Course Code: MRT206

Course Name: MICROPROCESSOR & EMBEDDED SYSTEMS

Max.Marks:100 Duration: 3 Hours

PARTA

Answer all Questions. Each question carries 3 Marks

1. Describe flag register in the 8085 microprocessors

2. Differentiate register and memory addressing mode with an example

3. Discuss mode 1 of 8255 PPI with diagram

4. Draw the timing diagram for Memory Read operation.

5. Differentiate between hard & soft real time systems.

MECHATRONICS

6. What are the demerits of Waterfall Model?

7. Explain the following instructions used in 8051 microcontrollers.

i) MOV R1, #05H ii) ADD A, #01H iii) MOV R2, 07H

8. Explain with neat diagram the RAM of 8051.

9. Define the structure of an Embedded C program

10. Explain I/O ports and its functions in 8051.

PART B

Answer any one full question from each module. Each question carries 14 Marks

Module 1

11.a. Draw and explain 8085 Architecture with neat diagram

b. List the various jump instructions by 8085 processor

12 a. Develop an assembly program to sort N number in ascending order

Module 2

13. Design a LED blinking system with 8085 and 8255

14.a. Explain Fetch cycle & Execute cycle in 8085.

b. Describe memory interface in 8085 processor

Module 3

15. Explain i) Compiler ii) Assembler iii) Linker iv) Loaders.

16. a. List the field of applications for an embedded system.

b. List out the challenges in Embedded Systems.

Module 4

17 a. Write an ALP in 8051 to add two 32-bit numbers & store the result.

b. Explain with neat diagram the Register organisation and SFR in 8051.

18 Explain with neat block diagram the architecture of 8051 Microcontroller

Module 5

19. Write a C program to send string “Hello” through serial port

MECHATRONICS

20. Explain with suitable diagram and program, how an ADC can be interfaced with 8085
Microprocessor.

Syllabus

Module Topics Hr

1 8085 Microprocessor: Evolution of Microprocessors- 8085 Architecture –
Addressing modes- Classification of Instruction set- Interrupts-introduction
to assembly language programming –code conversion, sorting–binary and
BCD arithmetic.

9

2 Timing and control–Machine cycles, instruction cycle and T states–fetch
and execute cycles– Timing diagram for instructions.

IO and memory interfacing –Address decoding–I/O ports – Programmable
peripheral interface PPI 8255 -Modes of operation. Interfacing of LEDs

9

3 Introduction to Embedded Systems-Application domain of embedded
systems, features and characteristics, System model, Microprocessor Vs
Microcontroller, current trends and challenges, hard and soft real time
systems, Embedded product development, Life Cycle Management (water
fall model), Tool Chain System, Assemblers, Compilers, linkers, Loaders,
Debuggers Profilers & Test Coverage Tools-cross compilation

9

4 8051 Microcontroller: Selection of Microcontrollers - 8051
Microcontroller Architecture-Memory organization –Special function
registers –Addressing modes – Instruction set - Introduction to assembly
language programming using 8051(basic arithmetic operations)- Interrupts.

9

5 Embedded C Programming: structure of an embedded C program -data
type-key words- basic programming using embedded C (bit level
manipulations-accessing and configuring of different status, control and
peripheral registers)

Peripheral Programming: I/O port programming – Timer programming –
Serial communication programming – Peripheral Interfacing diagram and
programming of A/D and D/A converters, Stepper motor.

9

MECHATRONICS

Text Books

1. Ramesh S Gaonkar, Microprocessor Architecture, Programming and applications with the
8085, Architecture, Programming and Applications, Penram International Publishing PVT
Ltd. 6th Edition

2.Mazidi Muhammad Ali, Mazidi Janice Gillispie and McKinlayRolin, ―The 8051
Microcontroller and Embedded Systems, 2 nd Edition, Prentice Hall of India, New Delhi,
2013.

3. Lyla B Das – Embedded Systems – An Integrated Approach, Pearson Publication, sixth
edition 2014

Reference Books

1.Douglas V. Hall, Microprocessors and Interfacing, Tata McGraw Hill, Education, New

2. Mathur A., Introduction to Microprocessors, Tata McGraw Hill, New Delhi,1992.

3. Rafiquzzaman, Microprocessor Theory and Application, PHI Learning, First Edition. 7.

4. Ray A joy and Burchandi, Advanced Microprocessor & Peripherals, Tata McGraw Hill,
Education, New Delhi, Second Edition.

5. Scott MacKenzie, Raphael C W Phan, “The8051Microcontroller”, Fourth Edition, Pearson
education Delhi, Third Edition. /Prentice hall of India International Publishing; Sixth
edition,2014.

Course Contents and Lecture Schedule
No Topic No. of Lectures
1 8085 Microprocessor
1.1 Evolution of Microprocessors- 8085 Architecture 1
1.2 Addressing modes 1
1.3 Classification of Instruction set 3
1.4 Interrupts 2
1.5 Introduction to assembly language programming –code

conversion, sorting–binary and BCD arithmetic.
2

2 8085 Interfacing
2.1 Timing and control–Machine cycles, instruction cycle and T states 2

2.2 fetch and execute cycles– Timing diagram for instructions. 2

2.3 IO and memory interfacing 1
2.4 Address decoding–I/O ports 1
2.5 Programmable peripheral interface PPI8255 -Modes of operation. 2
2.6 Interfacing of LEDs 1

MECHATRONICS

3 Introduction to Embedded Systems
3.1 Application domain of embedded systems, features and

characteristics, System model
2

3.2 Microprocessor Vs Microcontroller, current trends and challenges,
hard and soft real time systems,

2

3.3 Embedded product development, Life Cycle Management (water
fall model)

2

3.4 Tool Chain System, Assemblers, Compilers, linkers, Loaders,
Debuggers Profilers & Test Coverage Tools-cross compilation

3

4 8051 Microcontroller
4.1 Selection of Microcontrollers - 8051 Microcontroller Architecture 1
4.2 Memory organization 1
4.3 Special function registers 1
4.4 Addressing modes 1
4.5 Instruction set 2
4.6 Introduction to assembly language programming using 8051(basic

arithmetic operations)
2

4.7 Interrupts. 1
5 Embedded C Programming
5.1 structure of an embedded C program -data type-key words- basic

programming using embedded C (bit level manipulations-
accessing and configuring of different status, control and
peripheral registers)

3

5.2 I/O port programming 1
5.3 Timer programming 1
5.4 Serial communication programming 1
5.5 Peripheral Interfacing diagram and programming of A/D and D/A

converters, Stepper motor.
3

MECHATRONICS

MODULE 1

History of microprocessor:-

The invention of the transistor in 1947 was a significant development in the world of technology. It could perform the

function of a large component used in a computer in the early years. Shockley, Brattain and Bardeen are credited with this invention

and were awarded the Nobel prize for the same. Soon it was found that the function this large component was easily performed by a

group of transistors arranged on a single platform. This platform, known as the integrated chip (IC), turned out to be a very crucial

achievement and brought along a revolution in the use of computers. A person named Jack Kilby of Texas Instruments was honored

with the Nobel Prize for the invention of IC, which laid the foundation on which microprocessors were developed. At the same time,

Robert Noyce of Fairchild made a parallel development in IC technology for which he was awarded the patent.

ICs proved beyond doubt that complex functions could be integrated on a single chip with a highly developed speed and

storage capacity. Both Fairchild and Texas Instruments began the manufacture of commercial ICs in 1961. Later, complex

developments in the IC led to the addition of more complex functions on a single chip. The stage was set for a single controlling

circuit for all the computer functions. Finally, Intel corporation's Ted Hoff and Frederico Fagin were credited with the design of the

first microprocessor.

The work on this project began with an order from a Japanese calculator company Busicom to Intel, for building some chips for it.

Hoff felt that the design could integrate a number of functions on a single chip making it feasible for providing the required

functionality. This led to the design of Intel 4004, the world's first microprocessor. The next in line was the 8 bit 8008

microprocessor. It was developed by Intel in 1972 to perform complex functions in harmony with the 4004.

This was the beginning of a new era in computer applications. The use of mainframes and huge computers was scaled down to a

much smaller device that was affordable to many. Earlier, their use was limited to large organizations and universities. With the

advent of microprocessors, the use of computers trickled down to the common man. The next processor in line was Intel's 8080 with

an 8 bit data bus and a 16 bit address bus. This was amongst the most popular microprocessors of all time.

Very soon, the Motorola corporation developed its own 6800 in competition with the Intel's 8080. Fagin left Intel and formed his own

firm Zilog. It launched a new microprocessor Z80 in 1980 that was far superior to the previous two versions. Similarly, a break off

from Motorola prompted the design of 6502, a derivative of the 6800. Such attempts continued with some modifications in the base

structure.

The use of microprocessors was limited to task-based operations specifically required for company projects such as the automobile

sector. The concept of a 'personal computer' was still a distant dream for the world and microprocessors were yet to come into

personal use. The 16 bit microprocessors started becoming a commercial sell-out in the 1980s with the first popular one being the

TMS9900 of Texas Instruments.

http://www.buzzle.com/articles/positive-effects-of-technology-on-society.html
http://www.buzzle.com/articles/nobel-prizes/
http://www.buzzle.com/articles/what-are-computer-chips-made-of.html
http://www.buzzle.com/articles/uses-of-computer.html
http://www.buzzle.com/articles/autos/

Intel developed the 8086 which still serves as the base model for all latest advancements in the microprocessor family. It

was largely a complete processor integrating all the required features in it. 68000 by Motorola was one of the first

microprocessors to develop the concept of microcoding in its instruction set. They were further developed to 32 bit

architectures. Similarly, many players like Zilog, IBM and Apple were successful in getting their own products in the

market. However, Intel had a commanding position in the market right through the microprocessorera.

The 1990s saw a large scale application of microprocessors in the personal computer applications developed by the newly

formed Apple, IBM and Microsoft corporation. It witnessed a revolution in the use of computers, which by then was a

household entity.

This growth was complemented by a highly sophisticated development in the commercial use of microprocessors. In 1993,

Intel brought out its 'Pentium Processor' which is one of the most popular processors in use till date. It was followed by a

series of excellent processors of the Pentium family, leading into the 21st century. The latest one in commercial use is the

Pentium Dual Core technology and the Xeon processor. They have opened up a whole new world of diverse applications.

Supercomputers have become common, owing to this amazing development in microprocessors.

INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER

ARCHITECTURE:

A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to

central processing unit of a computer. Any microprocessor-based systems having limited number of resources are called

microcomputers. Nowadays, microprocessor can be seen in almost all types of electronics devices like mobile phones,

printers, washing machines etc. Microprocessors are also used in advanced applications like radars, satellites and flights.

Due to the rapid advancements in electronic industry and large scale integration of devices results in a significant cost

reduction and increase application of microprocessors and their derivatives.

Fig.1 Microprocessor-based system

 Bit: A bit is a single binary digit.

 Word: A word refers to the basic data size or bit size that can be processed by the arithmetic and logic unit of

the processor. A 16-bit binary number is called a word in a 16-bit processor.

 Bus: A bus is a group of wires/lines that carry similar information.

 System Bus: The system bus is a group of wires/lines used for communication between the microprocessor and

peripherals.

 Memory Word: The number of bits that can be stored in a register or memory element is called a memory word.

 Address Bus: It carries the address, which is a unique binary pattern used to identify

a memory location or an I/O port. For example, an eight bit address bus has eight lines and thus it can address 28

= 256 different locations. The locations in hexadecimal format can be written as 00H – FFH.

 Data Bus: The data bus is used to transfer data between memory and processor or between I/O device and

processor. For example, an 8-bit processor will generally have an 8-bit data bus and a 16-bit processor will have

16-bit data bus.

 Control Bus: The control bus carry control signals, which consists of signals for selection of memory or I/O

device from the given address, direction of data transfer and synchronization of data transfer in case of slow

devices.

http://www.buzzle.com/articles/desktop-computers-pc/
http://www.buzzle.com/articles/apple-computers/
http://www.buzzle.com/articles/when-was-microsoft-founded-and-by-whom.html
http://www.buzzle.com/articles/supercomputers/
http://www.buzzle.com/articles/supercomputers/

A typical microprocessor consists of arithmetic and logic unit (ALU) in association with control unit to

process the instruction execution. Almost all the microprocessors are based on the principle of store-

program concept. In store- program concept, programs or instructions are sequentially stored in the

memory locations that are to be executed. To do any task using a microprocessor, it is to be programmed

by the user. So the programmer must have idea about its internal resources, features and supported

instructions. Each microprocessor has a set of instructions, a list which is provided by the microprocessor

manufacturer. The instruction set of a microprocessor is provided in two forms: binary machine code and

mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of instructions in the form

of binary patterns is called a machine language and it is difficult for us to understand. Therefore, the binary

patterns are given abbreviated names, called mnemonics, which forms the assembly language. The

conversion of assembly-level language into binary machine-level language is done by using an application

called assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

 Transistor-Transistor Logic (TTL)

 Emitter Coupled Logic (ECL)

 Complementary Metal-Oxide

Semiconductor (CMOS) Classification of

Microprocessors:

Based on their specification, application and architecture microprocessors are classified.

Based on size of data bus:

 4-bit microprocessor

 8-bit microprocessor

 16-bit microprocessor

 32-bit microprocessor

Based on application:

 General-purpose microprocessor- used in general computer system and can be used by

programmer for any application. Examples, 8085 to Intel Pentium.

 Microcontroller- microprocessor with built-in memory and ports and can be programmed for

any generic control application. Example, 8051.

 Special-purpose processors- designed to handle special functions required for an application.
Examples, digital signal processors and application-specific integrated circuit (ASIC) chips.

Based on architecture:

 Reduced Instruction Set Computer (RISC) processors

 Complex Instruction Set Computer (CISC) processors

2. 8085 MICROPROCESSOR ARCHITECTURE

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses +5 V for power. It

can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit and address bus width is 16-bit, thus

it can address 216 = 64 KB of memory. The internal architecture of 8085 is shown is Fig. 2.

Fig. 2 Internal Architecture of 8085

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD), Subtraction

(SUB), AND, OR etc. It uses data from memory and from Accumulator to perform operations. The results

of the arithmetic and logical operations are stored in the accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig. 3. In addition, it

has two 16-bit registers: stack pointer and program counter. They are briefly described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E, H and L.

they can be combined as register pairs - BC, DE and HL to perform some

16- bit operations. The programmer can use these registers to store or copy data into the register by using data copy

instructions.

Fig. 3 Register organisation

Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data and to perform arithmetic

and logical operations. The result of an operation is stored in the accumulator. The accumulator is also identified as

register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data condition of the result in the

accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags.

Their bit positions in the flag register are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

Fig. 4 Flag register

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit, the flip-flop uses to

indicate a carry by setting CY flag to 1. When an arithmetic operation results in zero, Z flag is set to 1. The S flag is just a

copy of the bit D7 of the accumulator. A negative number has a 1 in bit D7 and a positive number has a 0 in 2’s

complement representation. The AC flag is set to 1, when a carry result from bit D3 and passes to bit D4. The P flag is set

to 1, when the result in accumulator contains even number of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. The

microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is to

point to the memory address from which the next byte is to be fetched. When a byte is being fetched, the program counter

is automatically incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory location in R/W memory, called

stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction sent here from memory

prior to execution. Decoder then takes instruction and decodes or interprets the instruction. Decoded instruction then

passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out the instruction, which has

been decoded. Typical buses and their timing are described as follows:

 Data Bus: Data bus carries data in binary form between microprocessor and other external units such as memory.

It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in nature. The data bus width

of 8085 microprocessor is 8-bit i.e. 28 combination of binary digits and are typically identified as D0 – D7. Thus

size of the data bus determines what arithmetic can be done. If only 8-bit wide then largest number is 11111111

(255 in decimal). Therefore, larger numbers have to be broken down into chunks of 255. This slows

microprocessor.

 Address Bus: The address bus carries addresses and is one way bus from microprocessor to the memory or other

devices. 8085 microprocessor contain 16-bit address bus and are generally identified as A0 - A15. The higher

order address lines (A8 – A15) are unidirectional and the lower order lines (A0 – A7) are multiplexed (time-

shared) with the eight data bits (D0 – D7) and hence, they are bidirectional.

 Control Bus: Control bus are various lines which have specific functions for coordinating and controlling

microprocessor operations. The control bus carries control signals partly unidirectional and partly bidirectional.

The following control and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an address appears on the AD0 –

AD7 lines, after which it becomes 0.

II. RD (active low output): The Read signal indicates that data are being read from the selected I/O or memory

device and that they are available on the data bus.

III. WR (active low output): The Write signal indicates that data on the data bus are to be written into a selected

memory or I/O location.

IV. IO/M (output): It is a signal that distinguished between a memory operation

and an I/O operation. When IO/M = 0 it is a memory operation and IO/M = 1 it is an I/O operation.

V. S1 and S0 (output): These are status signals used to specify the type of operation being performed;

they are listed in Table 1.

Table 1 Status signals and associated operations

S1 S0 States

0 0 Halt

0 1 Write

1 0 Read

1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 5. The microprocessor performs primarily four

operations:

1. Memory Read: Reads data (or instruction) from memory.

2. Memory Write: Writes data (or instruction) into memory.

3. I/O Read: Accepts data from input device.

4. I/O Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control bus as shown in Fig. 5.

Fig. 5 The 8085 bus structure

3. 8085 PIN DESCRIPTION

Properties:

 It is a 8-bit microprocessor

 Manufactured with N-MOS technology

 40 pin IC package

 It has 16-bit address bus and thus has 216 = 64 KB addressing capability.

 Operate with 3 MHz single-phase clock

 +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 6. All the signals are classified into

six groups:

 Address bus

 Data bus

 Control & status signals

 Power supply and frequency signals

 Externally initiated signals

 Serial I/O signals

Fig. 6 8085 microprocessor pin layout and signal groups

Address and Data Buses:

 A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and the eight bits of the I/O

addresses. These lines enter into tri-state high impedance state during HOLD and HALT modes.

 AD0 – AD7 (input/output, 3-state): Lower significant bits of memory addresses and the eight bits of the I/O

addresses during first clock cycle. Behaves as data bus

during third and fourth clock cycle. These lines enter into tri-state high impedance state during HOLD and

HALT modes.

Control & Status Signals:

 ALE: Address latch enable

 RD : Read control signal.

 WR : Write control signal.

 IO/M , S1 and S0 : Status signals. Power

Supply & Clock Frequency:

 Vcc: +5 V power supply

 Vss: Ground reference

 X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

 CLK: Clock output

Externally Initiated and Interrupt Signals:

 RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are tri-stated and the processor is reset.

 RESET OUT: This signal indicates that the processor is being reset. The signal can be used to reset other

devices.

 READY: When this signal is low, the processor waits for an integral number of clock cycles until it goes high.

 HOLD: This signal indicates that a peripheral like DMA (direct memory access) controller is requesting the use

of address and data bus.

 HLDA: This signal acknowledges the HOLD request.

 INTR: Interrupt request is a general-purpose interrupt.

 INTA : This is used to acknowledge an interrupt.

 RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts and have highest priority than INTR

interrupt.

 TRAP: This is a non-maskable interrupt and has the highest priority.

Serial I/O Signals:

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A using RIM instruction.

 SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. INSTRUCTION SET AND EXECUTION IN 8085

Based on the design of the ALU provides

instruction set for every machine code and

mnemonics.

and decoding unit, the microprocessor manufacturer microprocessor. The

instruction set consists of both

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The entire group of

instructions that a microprocessor supports is called instruction set. Microprocessor instructions can be classified based on

the parameters such functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to destination. The content of the

source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like addition, subtraction, increment &

decrement. One of the data used in arithmetic operation is stored in accumulator and the result is also stored in

accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The operations like AND, OR and

EXOR uses two operands, one is stored in accumulator and other can be any register or memory location. The

result is stored in accumulator. NOT operation requires single operand, which is stored in

accumulator.

IV. Branching operations: Instructions in this group can be used to transfer program sequence from one memory

location to another either conditionally or unconditionally.

V. Machine control operations: Instruction in this group control execution of other instructions and control

operations like interrupt, halt etc.

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are depicted in Table 2.

I. Two-byte instructions: Instruction having two byte in machine code. Examples are depicted in Table 3

II. Three-byte instructions: Instruction having three byte in machine code. Examples are depicted in Table 4.

Table 2 Examples of one byte instructions

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 3 Examples of two byte instructions

Opcode Operand Machine code/Hex code Byte description

MVI A, 7FH 3E First byte
 7F Second byte

ADI 0FH C6 First byte
 0F Second byte

Table 4 Examples of three byte instructions

Opcode Operand Machine code/Hex code Byte description

JMP 9050H C3 First byte
 50 Second byte
 90 Third byte

LDA 8850H 3A First byte
 50 Second byte
 88 Third byte

Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called addressing. The various formats for

specifying operands are called addressing modes. The 8085 has the following five types of addressing:

1. Immediate addressing

2. Memory direct addressing

3. Register direct addressing

4. Indirect addressing

5. Implicit addressing

Immediate Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the destination register or memory

location.

Ex: MVI A, 9AH

 The operand is a part of the instruction.

 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and register. The memory location address is

given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the accumulator.

Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory location.

Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data is moved to the accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be operated upon.

Ex: CMA

The instruction complements the content of the accumulator. No specific data or operand is mentioned in the instruction.

5. INSTRUCTION SET OF 8085

Data Transfer Instructions:

MOV instruction

XCHG Instruct

Mnemonic Meaning Format Operation Flags affected

XLAT Translate XLAT ((AL) + (BX) + (DS) *10) AL none

LEA, LDS, and LES instructions

LEA: Load effective Address, LEA Reg 16, EA

LDS: Load register and DS, LDS Reg 16, EA

LES: Load register and ES, LES Reg 16, EA

XLAT

Arithmetic Instructions:

Fig. 12 Timing diagram for the IN instruction

7. 8085 INTERRUPTS

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its current program execution to

another program having higher priority. The interrupt signal may be given to the processor by any external peripheral

device.

The program or the routine that is executed upon interrupt is called interrupt service routine (ISR). After execution of ISR,

the processor must return to the interrupted program. Key features in the interrupt structure of any microprocessor are as

follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt signal. This address is called

interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.

v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

 Vectored interrupts require the IVA to be supplied by the external device that gives the interrupt

signal. This technique is vectoring, is implemented in number of ways.

 Non-vectored interrupts have fixed IVA for ISRs of different interrupt signals.

ii. Maskable and Non-Maskable Interrupts

 Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware

means.

 Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are

executed.

iii. Software and Hardware Interrupts

 Software interrupts are special instructions, after execution transfer the control to predefined ISR.

 Hardware interrupts are signals given to the processor, for recognition as an interrupt and execution of

the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags, registers etc) in the stack.

ii. Load PC with the beginning address of an ISR and start to execute it.

iii. Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST) instructions. These are one byte

instructions that make the processor execute a subroutine at predefined locations. Instructions and their vector addresses

are given in Table 6.

Table 6 Software interrupts and their vector addresses

Instruction Machine hex code Interrupt Vector Address

RST 0 C7 0000H

RST 1 CF 0008H

RST 2 D7 0010H

RST 3 DF 0018H

RST 4 E7 0020H

RST 5 EF 0028H

RST 6 F7 0030H

RST 7 FF 0032H

The software interrupts can be treated as CALL instructions with default call locations. The concept of priority does not

apply to software interrupts as they are inserted into the program as instructions by the programmer and executed by the

processor when the respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP. Their IVA and priorities are given in

Table 7.

Table 7 Hardware interrupts of 8085

Interrupt Interrupt vector Maskable or non- Edge or level priority

address maskable Triggered

TRAP 0024H Non-makable Level 1

RST 7.5 003CH Maskable Rising edge 2

RST 6.5 0034H Maskable Level 3

RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Masking of Interrupts:

Masking can be done for four hardware interrupts INTR, RST 5.5, RST 6.5, and RST 7.5. The masking of 8085 interrupts

is done at different levels. Fig. 13 shows the organization of hardware interrupts in the 8085.

Fig. 13 Interrupt structure of 8085

The Fig. 13 is explained by the following five points:

i. The maskable interrupts are by default masked by the Reset signal. So no interrupt is recognized by the hardware

reset.

ii. The interrupts can be enabled by the EI instruction.

iii. The three RST interrupts can be selectively masked by loading the appropriate word in the accumulator and

executing SIM instruction. This is called software masking.

iv. All maskable interrupts are disabled whenever an interrupt is recognized.

v. All maskable interrupts can be disabled by executing the DI instruction.

RST 7.5 alone has a flip-flop to recognize edge transition. The DI instruction reset interrupt enable flip-flop in the

processor and the interrupts are disabled. To enable interrupts, EI instruction has to be executed.

SIM Instruction:

The SIM instruction is used to mask or unmask RST hardware interrupts. When executed, the SIM instruction reads the

content of accumulator and accordingly mask or unmask the interrupts. The format of control word to be stored in the

accumulator before executing SIM instruction is as shown in Fig. 14.

Fig. 14 Accumulator bit pattern for SIM instruction

In addition to masking interrupts, SIM instruction can be used to send serial data on the SOD line of the processor. The

data to be send is placed in the MSB bit of the accumulator and the serial data output is enabled by making D6 bit to 1.

RIM Instruction:

RIM instruction is used to read the status of the interrupt mask bits. When RIM instruction is executed, the accumulator is

loaded with the current status of the interrupt masks and the pending interrupts. The format and the meaning of the data

stored in the accumulator after execution of RIM instruction is shown in Fig. 15.

In addition RIM instruction is also used to read the serial data on the SID pin of the processor. The data on the SID pin is

stored in the MSB of the accumulator after the execution of the RIM instruction.

Fig. 15 Accumulator bit pattern after execution of RIM instruction

Ex: Write an assembly language program to enables all the interrupts in 8085 after reset.

EI : Enable interrupts

MVI A, 08H : Unmask the interrupts

SIM : Set the mask and unmask using SIM instruction

Timing of Interrupts:

The interrupts are sensed by the processor one cycle before the end of execution of each instruction. An interrupts signal

must be applied long enough for it to be recognized. The longest instruction of the 8085 takes 18 clock periods. So, the

interrupt signal must be applied for at least 17.5 clock periods. This decides the minimum pulse width for the interrupt

signal.

The maximum pulse width for the interrupt signal is decided by the condition that the interrupt signal must not be

recognized once again. This is under the control of the programmer.

8085 ASSEMBLY LANGUAGE PROGRAMS & EXPLANATIONS

Write an Assembly language 8085 program to sort an array of data in

ascending order

Data

8500 – FF (data 1)

8501 – 07 (data 2)

8502 – DD (data 3)

8503 – E6 (data 4)

8504 – 85 (data 5)

Counter = n-1

n= number of data

Program

LABEL INSTRUCTION COMMENT

 MVI B, 04H

B= 04H

Label3 MOV C,B

B=C

 LXI H,8500H

HL =8500H

Label2 MOV A,M A=FFH

 INX H Increment HL

 MOV D,M D = 07H

 CMP D COMPARE A & D

 JC Label1 If carry=1 jump to label1

 MOV M,A 8501 = FFH

 DCX H Decrement HL

 MOV M,D 8500 = 07H

 INX H Increment HL

Label1 DCR C Decrement C

 JNZ Label2 If C = not zero jump to

label2

 DCR B Decrement B

 JNZ Label3 If B = not zero jump to

label3

 HLT Stop

Write an Assembly language 8085 program to sort an array of data in

descending order

Data

8500 – FF (data 1)

8501 – 07 (data 2)

8502 – DD (data 3)

8503 – E6 (data 4)

8504 – 85 (data 5)

Counter = n-1

n= number of data

Program

LABEL INSTRUCTION COMMENT

 MVI B, 04H

B= 04H

Label3 MOV C,B

B=C

 LXI H,8500H

HL =8500H

Label2 MOV A,M A=FFH

 INX H Increment HL

 MOV D,M D = 07H

 CMP D COMPARE A & D

 JNC Label1 If carry is not equal to1

jump to label1

 MOV M,A 8501 = FFH

 DCX H Decrement HL

 MOV M,D 8500 = 07H

 INX H Increment HL

Label1 DCR C Decrement C

 JNZ Label2 If C = not zero jump to

label2

 DCR B Decrement B

 JNZ Label3 If B = not zero jump to

label3

 HLT Stop

Write an Assembly language 8085 program to convert binary numbers to

gray

1. STC is used to set carry flag (CY) to 1.

2. CMC is used to take 1’s compliment of the contents of carry flag (CY).

3. LDA 2050 is used load the data from address 2050 in A.

4. MOV B, A is used to move the data of A into B.

5. RAR is used to rotate the bits of A along with carry flag (CY) to right one

time.

6. XRA B is used to perform XOR operation between the contents of register

A and B.

7. STA 3050 is used to store the contents of A to 3050.

8. HLT is used end the program

Write an Assembly language 8085 program to convert gray to binary

numbers

Explanation–

1. LDA 2050 is used to load the data from address 2050 in A

2. MVI C, 07 is used to move the data 07 in C

3. MOV B, A moves the data of A to B

4. ANI 80 extracts the MSB(Most Significant Bit) of data available in A

5. RRC rotates the bits of A to right without carry

6. ANI 7F is used to take AND between data in A and 7F

7. XRA B takes XOR between the data present in A and B

8. DCR C is used to decrement the contents of C

9. JNZ 2008 is used to jump to address 2008 if ZF = 0

10. STA 3050 is used to store the result at memory address 3050

11. HLT is used to end the program

CHAPTER 3

8085 Assembly Language Programs & Explanations

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 32H : Store 32H in the accumulator

STA 4000H : Copy accumulator contents at address 4000H
HLT : Terminate program execution

Program 2:

LXI H : Load HL with 4000H

MVI M : Store 32H in memory location pointed by HL register pair

(4000H)
HLT : Terminate program execution

2. Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

LDA 2000H : Get the contents of memory location 2000H into

accumulator

MOV B, A : Save the contents into B register

LDA 4000H : Get the contents of memory location 4000Hinto

accumulator

STA 2000H : Store the contents of accumulator at address 2000H

MOV A, B : Get the saved contents back into A register

STA 4000H : Store the contents of accumulator at address 4000H

Program 2:

LXI H 2000H : Initialize HL register pair as a pointer to

memory location 2000H.

LXI D 4000H : Initialize DE register pair as a pointer to

memory location 4000H.

MOV B, M : Get the contents of memory location 2000H into B

register.

LDAX D : Get the contents of memory location 4000H into A

register.

MOV M, A : Store the contents of A register into memory

location 2000H.

MOV A, B : Copy the contents of B register into accumulator.

STAX D : Store the contents of A register into memory location

4000H.

HLT : Terminate program execution.

3. Sample problem

(4000H) = 14H

(4001H) = 89H

Result = 14H + 89H = 9DH Source program

LXI H 4000H : HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

ADD M : Add second operand
INX H : HL points 4002H

MOV M, A : Store result at 4002H

HLT : Terminate program execution

4. Statement: Subtract the contents of memory location 4001H from the memory location 2000H and place the
result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) = 51H

(4001H) = 19H

Result = 51H - 19H = 38H

Source program:

LXI H, 4000H

: HL points 4000H

MOV A, M : Get first operand

INX H : HL points 4001H

SUB M : Subtract second operand

INX H : HL points 4002H

MOV M, A : Store result at 4002H.

HLT : Terminate program execution

5. Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit number in

memory locations 4002H and 4003H. The most significant eight bits of the two numbers to be added are in

memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most

significant byte in memory location 4005H.

Program - 5.a: Add two 16-bit numbers - Source Program 1

Sample problem:

(4000H) = 15H

(4001H) = 1CH

(4002H) = B7H

(4003H) = 5AH

Result = 1C15 + 5AB7H = 76CCH (4004H) =

CCH

(4005H) = 76H

Source Program 1:

LHLD 4000H : Get first I6-bit number in HL

XCHG : Save first I6-bit number in DE

LHLD 4002H : Get second I6-bit number in HL

MOV A, E : Get lower byte of the first number

ADD L : Add lower byte of the second number
MOV L, A : Store result in L register

MOV A, D : Get higher byte of the first number

ADC H : Add higher byte of the second number with CARRY
MOV H, A : Store result in H register

SHLD 4004H : Store I6-bit result in memory locations 4004H and

4005H.

HLT : Terminate program execution

6. Statement: Add the contents of memory locations 40001H and 4001H and place the result in the memory

locations 4002Hand 4003H.

Sample problem:

(4000H) = 7FH

(400lH) = 89H

Result = 7FH + 89H = lO8H (4002H) =
08H (4003H) = 0lH

Source program:

LXI H, 4000H :HL Points 4000H

MOV A, M :Get first operand
INX H :HL Points 4001H

ADD M :Add second operand
INX H :HL Points 4002H

MOV M, A :Store the lower byte of result at 4002H

MVIA, 00 :Initialize higher byte result with 00H

ADC A :Add carry in the high byte result

INX H :HL Points 4003H

MOV M, A :Store the higher byte of result at 4003H

HLT :Terminate program execution

7. Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the 16-bit number in

memory locations 4000H and 4001H. The most significant eight bits of the two numbers are in memory

locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most significant

byte in memory location 4005H.

Sample problem

(4000H) = 19H

(400IH) = 6AH

(4004H) = I5H (4003H) = 5CH Result = 6A19H -

5C15H = OE04H (4004H) = 04H

(4005H) = OEH

Source program:

LHLD 4000H : Get first 16-bit number in HL

XCHG : Save first 16-bit number in DE

LHLD 4002H : Get second 16-bit number in HL

MOV A, E : Get lower byte of the first number

SUB L : Subtract lower byte of the second number

MOV L, A : Store the result in L register

MOV A, D : Get higher byte of the first number

SBB H : Subtract higher byte of second number with borrow

MOV H, A : Store l6-bit result in memory locations 4004H and

4005H.

SHLD 4004H : Store l6-bit result in memory locations 4004H and
4005H.

HLT : Terminate program execution

8. Statement: Find the l's complement of the number stored at memory location 4400H and store the
complemented number at memory location 4300H.

Sample problem:

(4400H) = 55H

Result = (4300B) = AAB

Source program:

LDA 4400B : Get the number

CMA : Complement number
STA 4300H : Store the result

HLT : Terminate program execution

9. Statement: Find the 2's complement of the number stored at memory location 4200H and store the

complemented number at memory location 4300H.

Sample problem:

(4200H) = 55H

Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H : Get the number

CMA : Complement the number

ADI, 01 H : Add one in the number

STA 4300H : Store the result

HLT : Terminate program execution

10. Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and store
result in memory location 4300H. Assume the least significant digit is stored at 4200H.

Sample problem: (4200H)

= 04 (4201H) = 09

Result = (4300H) = 94

Source program

LDA 4201H : Get the Most significant BCD digit

RLC

RLC

RLC

RLC : Adjust the position of the second digit (09 is changed to
90)

ANI FOH : Make least significant BCD digit zero

MOV C, A : store the partial result

LDA 4200H : Get the lower BCD digit

ADD C : Add lower BCD digit

STA 4300H : Store the result
HLT : Terminate program execution

11. Statement: Two digit BCD number is stored in memory location 4200H. Unpack the BCD number and

store the two digits in memory locations 4300H and 4301H such that memory location 4300H will have lower

BCD digit.

Sample problem

(4200H) = 58

Result = (4300H) = 08 and (4301H) = 05

Source program

LDA 4200H : Get the packed BCD number

ANI FOH : Mask lower nibble

RRC

RRC

RRC

RRC : Adjust higher BCD digit as a lower digit

STA 4301H : Store the partial result

LDA 4200H : .Get the original BCD number

ANI OFH : Mask higher nibble

STA 4201H : Store the result

HLT : Terminate program execution

12. Statement:Read the program given below and state the contents of all registers after the
execution of each instruction in sequence.

Main program:

4000H LXI SP, 27FFH

4003H LXI H, 2000H

4006H LXI B, 1020H

4009H CALL SUB

400CH HLT

Subroutine program:

4100H SUB: PUSH B

4101H PUSH H

4102H LXI B, 4080H

4105H LXI H, 4090H

4108H SHLD 2200H

4109H DAD B

410CH POP H

410DH POP B

410EH RET

13. Statement:Write a program to shift an eight bit data four bits right. Assume that data is in register C.

Source program:

MOV A, C

RAR

RAR

RAR

RAR

MOV C, A
HLT

14. Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL register pair

Source program:

DAD H : Adds HL data with HL data

15. Statement: Write a set of instructions to alter the contents of flag register in 8085.

PUSH PSW : Save flags on stack

POP H : Retrieve flags in 'L'

MOV A, L : Flags in accumulator

CMA : Complement accumulator

MOV L, A : Accumulator in 'L'

PUSH H : Save on stack

POP PSW : Back to flag register
HLT :Terminate program execution

16. Statement: Calculate the sum of series of numbers. The length of the series is in memory location 4200H

and the series begins from memory location 4201H.

1. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at memory location 4300H.

2. Consider the sum to be 16 bit number. Store the sum at memory locations 4300H and 4301H

a. Sample problem

4200H = 04H

4201H = 10H

4202H = 45H

4203H = 33H

4204H = 22H

Result = 10 +41 + 30 + 12 = H

4300H = H

Source program:

LDA 4200H

MOV C, A : Initialize counter

SUB A : sum = 0

LXI H, 420lH : Initialize pointer

BACK: ADD M : SUM = SUM + data

INX H : increment pointer

DCR C : Decrement counter

JNZ BACK : if counter 0 repeat

STA 4300H : Store sum

HLT : Terminate program execution

b. Sample problem

4200H = 04H 420lH

= 9AH 4202H = 52H

4203H = 89H 4204H

= 3EH

Result = 9AH + 52H + 89H + 3EH = H 4300H = B3H

Lower byte

4301H = 0lH Higher byte

Source program:

LDA 4200H

MOV C, A : Initialize counter
LXI H, 4201H : Initialize pointer

SUB A :Sum low = 0

MOV B, A : Sum high = 0

BACK: ADD M : Sum = sum + data

JNC SKIP

INR B : Add carry to MSB of SUM

SKIP: INX H : Increment pointer

DCR C : Decrement counter

JNZ BACK : Check if counter 0 repeat
STA 4300H : Store lower byte

MOV A, B

STA 4301H : Store higher byte

HLT :Terminate program execution

17. Statement: Multiply two 8-bit numbers stored in memory locations 2200H and 2201H by repetitive addition

and store the result in memory locations 2300H and 2301H.

Sample problem:

(2200H) = 03H

(2201H) = B2H

Result = B2H + B2H + B2H = 216H = 216H

(2300H) = 16H

(2301H) = 02H

Source program

LDA 2200H

MOV E, A

MVI D, 00 : Get the first number in DE register pair

LDA 2201H

MOV C, A : Initialize counter

LX I H, 0000 H : Result = 0

BACK: DAD D : Result = result + first number

DCR C : Decrement count

JNZ BACK : If count 0 repeat

SHLD 2300H : Store result

HLT : Terminate program execution

18. Statement:Divide 16 bit number stored in memory locations 2200H and 2201H by the 8 bit number stored at

memory location 2202H. Store the quotient in memory locations 2300H and 2301H and remainder in memory

locations 2302H and 2303H.

Sample problem (2200H) =

60H (2201H) = A0H

(2202H) = l2H

Result = A060H/12H = 8E8H Quotient and 10H remainder (2300H) = E8H

(2301H) = 08H

(2302H= 10H (2303H)

00H

Source program

LHLD 2200H : Get the dividend

LDA 2202H : Get the divisor
MOV C, A

LXI D, 0000H : Quotient = 0

BACK: MOV A, L

SUB C : Subtract divisor

MOV L, A : Save partial result

JNC SKIP : if CY 1 jump
DCR H : Subtract borrow of previous subtraction

SKIP: INX D : Increment quotient

MOV A, H

CPI, 00 : Check if dividend < divisor

JNZ BACK : if no repeat

MOV A, L

CMP C

JNC BACK

SHLD 2302H : Store the remainder

XCHG

SHLD 2300H : Store the quotient
HLT : Terminate program execution

19. Statement:Find the number of negative elements (most significant bit 1) in a block of data. The length of

the block is in memory location 2200H and the block itself begins in memory location 2201H. Store the

number of negative elements in memory location 2300H

Sample problem

(2200H) = 04H

(2201H) = 56H

(2202H) = A9H

(2203H) = 73H

(2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program

LDA 2200H

MOV C, A : Initialize count

MVI B, 00 : Negative number = 0
LXI H, 2201H : Initialize pointer

BACK: MOV A, M : Get the number

ANI 80H : Check for MSB
JZ SKIP : If MSB = 1

INR B : Increment negative number count

SKIP: INX H : Increment pointer

DCR C : Decrement count

JNZ BACK : If count 0 repeat

MOV A, B

STA 2300H : Store the result

HLT : Terminate program execution

20. Statement:Find the largest number in a block of data. The length of the block is in memory location 2200H

and the block itself starts from memory location 2201H.

Store the maximum number in memory location 2300H. Assume that the numbers in the block are all 8 bit

unsigned binary numbers.

Sample problem

(2200H) = 04

(2201H) = 34H

(2202H) = A9H

(2203H) = 78H

(2204H) =56H

Result = (2202H) = A9H

Source program

LDA 2200H

MOV C, A : Initialize counter

XRA A : Maximum = Minimum possible value = 0

LXI H, 2201H : Initialize pointer
BACK: CMP M : Is number> maximum

JNC SKIP : Yes, replace maximum

MOV A, M

SKIP: INX H

DCR C

JNZ BACK

STA 2300H : Store maximum number

HLT : Terminate program execution

21. Statement:Write a program to count number of l's in the contents of D register and store the count
in the B register.

Source program:

MVI B, 00H

MVI C, 08H

MOV A, D

BACK: RAR

JNC SKIP
INR B

SKIP: DCR C

JNZ BACK
HLT

22. Statement:Write a program to sort given 10 numbers from memory location 2200H in the ascending
order.

Source program:

MVI B, 09 : Initialize counter

START : LXI H, 2200H: Initialize memory pointer

MVI C, 09H : Initialize counter 2

BACK: MOV A, M : Get the number

INX H : Increment memory pointer
CMP M : Compare number with next number

JC SKIP : If less, don't interchange
JZ SKIP : If equal, don't interchange

MOV D, M

MOV M, A

DCX H

MOV M, D

INX H : Interchange two numbers
SKIP:DCR C : Decrement counter 2

JNZ BACK : If not zero, repeat

DCR B : Decrement counter 1

JNZ START

HLT : Terminate program execution

23. Statement:Calculate the sum of series of even numbers from the list of numbers. The length of the list is in

memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 8 bit

number so you can ignore carries and store the sum at memory location 2Sample problem:

2200H= 4H

2201H= 20H

2202H= l5H

2203H= l3H

2204H= 22H

Result 22l0H= 20 + 22 = 42H = 42H

Source program:

LDA 2200H

MOV C, A

MVI B, 00H

LXI H, 2201H

BACK: MOV A, M

ANI 0lH

JNZ SKIP

MOV A, B

ADD M

MOV B, A

SKIP: INX H

DCR C

JNZ BACK

STA 2210H

HLT

24. Statement:Calculate the sum of series of odd numbers from the list of numbers. The length of the list is in

memory location 2200H and the series itself begins from memory location 2201H. Assume the sum to be 16-bit.

Store the sum at memory locations 2300H and 2301H.

Sample problem:

2200H = 4H

2201H= 9AH

2202H= 52H

2203H= 89H

2204H= 3FH

Result = 89H + 3FH = C8H 2300H= H

Lower byte 2301H = H Higher byte

Source program

LDA 2200H

MOV C, A : Initialize counter

LXI H, 2201H : Initialize pointer

MVI E, 00 : Sum low = 0

MOV D, E : Sum high = 0

BACK: MOV A, M : Get the number

ANI 0lH : Mask Bit 1 to Bit7

JZ SKIP : Don't add if number is even

MOV A, E : Get the lower byte of sum

ADD M : Sum = sum + data

MOV E, A : Store result in E register

JNC SKIP

INR D : Add carry to MSB of SUM

SKIP: INX H : Increment pointer

DCR C : Decrement

25. Statement:Find the square of the given numbers from memory location 6100H and store the result from
memory location 7000H

Source Program:

LXI H, 6200H : Initialize lookup table pointer
LXI D, 6100H : Initialize source memory pointer

LXI B, 7000H : Initialize destination memory pointer

BACK: LDAX D : Get the number
MOV L, A : A point to the square

MOV A, M : Get the square

STAX B : Store the result at destination memory location
INX D : Increment source memory pointer
INX B : Increment destination memory pointer

MOV A, C

CPI 05H : Check for last number

JNZ BACK : If not repeat
HLT : Terminate program execution

26. Statement: Search the given byte in the list of 50 numbers stored in the consecutive memory locations and

store the address of memory location in the memory locations 2200H and 2201H. Assume byte is in the C

register and starting address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.

Source program:

LX I H, 2000H : Initialize memory pointer 52H

MVI B, 52H : Initialize counter
BACK: MOV A, M : Get the number

CMP C : Compare with the given byte
JZ LAST : Go last if match occurs

INX H : Increment memory pointer

DCR B : Decrement counter
JNZ B : I f not zero, repeat

LXI H, 0000H

SHLD 2200H

JMP END : Store 00 at 2200H and 2201H

LAST: SHLD 2200H : Store memory address

END: HLT : Stop

27. Statement: Two decimal numbers six digits each, are stored in BCD package form. Each number occupies

a sequence of byte in the memory. The starting address of first number is 6000H Write an assembly language

program that adds these two numbers and stores the sum in the same format starting from memory location

6200H

Source Program:

LXI H, 6000H : Initialize pointer l to first number

LXI D, 6l00H : Initialize pointer2 to second number
LXI B, 6200H : Initialize pointer3 to result

STC

CMC : Carry = 0
BACK: LDAX D : Get the digit

ADD M : Add two digits

DAA : Adjust for decimal
STAX.B : Store the result

INX H : Increment pointer 1

INX D : Increment pointer2

INX B : Increment result pointer

MOV A, L

CPI 06H : Check for last digit
JNZ BACK : If not last digit repeat

HLT : Terminate program execution

28. Statement: Add 2 arrays having ten 8-bit numbers each and generate a third array of result. It is necessary

to add the first element of array 1 with the first

element of array-2 and so on. The starting addresses of array l, array2 and array3 are 2200H, 2300H and

2400H, respectively.

Source Program:

LXI H, 2200H : Initialize memory pointer 1

LXI B, 2300H : Initialize memory pointer 2
LXI D, 2400H : Initialize result pointer

BACK: LDAX B : Get the number from array 2

ADD M : Add it with number in array 1
STAX D : Store the addition in array 3

INX H : Increment pointer 1

INX B : Increment pointer2

INX D : Increment result pointer

MOV A, L

CPI 0AH : Check pointer 1 for last number

JNZ BACK : If not, repeat

HLT : Stop

29. Statement: Write an assembly language program to separate even numbers from the given list of 50

numbers and store them in the another list starting from 2300H. Assume starting address of 50 number list

is 2200H

Source Program:

LXI H, 2200H

: Initialize memory pointer l

LXI D, 2300H : Initialize memory pointer2

MVI C, 32H : Initialize counter

BACK:MOV A, M : Get the number

ANI 0lH : Check for even number

JNZ SKIP : If ODD, don't store

MOV A, M : Get the number

STAX D : Store the number in result list

INX D : Increment pointer 2

SKIP: INX H : Increment pointer l

DCR C : Decrement counter

JNZ BACK : If not zero, repeat

HLT : Stop

30. Statement: Write assembly language program with proper comments for the following:

A block of data consisting of 256 bytes is stored in memory starting at 3000H. This block is to be shifted

(relocated) in memory from 3050H onwards. Do not shift the block or part of the block anywhere else in the

memory.

Source Program:

Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it is necessary to transfer last byte

first and first byte last.

MVI C, FFH : Initialize counter
LX I H, 30FFH : Initialize source memory pointer 3l4FH

LXI D, 314FH : Initialize destination memory pointer

BACK: MOV A, M : Get byte from source memory block

STAX D : Store byte in the destination memory block

DCX H : Decrement source memory pointer

DCX : Decrement destination memory pointer
DCR C : Decrement counter

JNZ BACK : If counter 0 repeat

HLT : Stop execution

31. Statement: Add even parity to a string of 7-bit ASCII characters. The length of the string is in memory

location 2040H and the string itself begins in memory location 2041H. Place even parity in the most

significant bit of each character.

Source Program:

LXI H, 2040H

MOV C ,M : Counter for character

REPEAT:INX H : Memory pointer to character

MOV A,M : Character in accumulator

ORA A : ORing with itself to check parity.

JPO PAREVEN : If odd parity place

ORI 80H even parity in D7 (80).
PAREVEN:MOV M , A : Store converted even parity character.

DCR C : Decrement counter.
JNZ REPEAT : If not zero go for next character.

HLT

32. Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find number of negative, zero and

positive numbers from this list and store these results in memory locations 7000H, 7001H, and 7002H

respectively

Source Program:

LXI H, 6000H

: Initialize memory pointer

MVI C, 00H : Initialize number counter

MVI B, 00H : Initialize negative number counter

MVI E, 00H : Initialize zero number counter

BEGIN:MOV A, M : Get the number

CPI 00H : If number = 0

JZ ZERONUM : Goto zeronum

ANI 80H : If MSB of number = 1i.e. if

JNZ NEGNUM number is negative goto NEGNUM

INR D : otherwise increment positive number counter

JMP LAST

ZERONUM:INR E : Increment zero number counter

JMP LAST

NEGNUM:INR B : Increment negative number counter

LAST:INX H : Increment memory pointer

INR C : Increment number counter

MOV A, C

CPI 32H : If number counter = 5010 then

JNZ BEGIN : Store otherwise check next number

LXI H, 7000 : Initialize memory pointer.

MOV M, B : Store negative number.

INX H

MOV M, E : Store zero number.

INX H

MOV M, D : Store positive number.

HLT : Terminate execution

33. Statement:Write an 8085 assembly language program to insert a string of four characters from the tenth

location in the given array of 50 characters

Solution:

Step 1: Move bytes from location 10 till the end of array by four bytes downwards.

Step 2: Insert four bytes at locations 10, 11, 12 and 13.

Source Program:

LXI H, 2l31H : Initialize pointer at the last location of array.

LXI D, 2l35H : Initialize another pointer to point the last

location of array after insertion.

AGAIN: MOV A, M : Get the character

STAX D : Store at the new location

DCX D : Decrement destination pointer

DCX H : Decrement source pointer

MOV A, L : [check whether desired

CPI 05H bytes are shifted or not]
JNZ AGAIN : if not repeat the process

INX H : adjust the memory pointer

LXI D, 2200H : Initialize the memory pointer to point the string to

be inserted

REPE: LDAX D : Get the character
MOV M, A : Store it in the array

INX D : Increment source pointer

INX H : Increment destination pointer

MOV A, E : [Check whether the 4 bytes

CPI 04 are inserted]

JNZ REPE : if not repeat the process
HLT : stop

34. Statement:Write an 8085 assembly language program to delete a string of 4 characters from the tenth

location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4 characters i.e. from location 10

onwards.

Source Program:

LXI H, 2l0DH :Initialize source memory pointer at the 14thlocation

of the array.

LXI D, 2l09H : Initialize destn memory pointer at the 10th location

of the array.

MOV A, M : Get the character
STAX D : Store character at new location

INX D : Increment destination pointer

INX H : Increment source pointer

MOV A, L : [check whether desired

CPI 32H bytes are shifted or not]

JNZ REPE : if not repeat the process

HLT : stop

35. Statement:Multiply the 8-bit unsigned number in memory location 2200H by the 8-bit unsigned number in

memory location 2201H. Store the 8 least significant bits of the result in memory location 2300H and the 8

most significant bits in memory location 2301H.

Sample problem:

(2200) = 1100 (0CH)

(2201) = 0101 (05H)

Multiplicand = 1100 (1210)

Multiplier = 0101 (510)

Result = 12 x 5 = (6010)

Source program

LXI H, 2200 : Initialize the memory pointer

MOV E, M : Get multiplicand

MVI D, 00H : Extend to 16-bits

INX H : Increment memory pointer

MOV A, M : Get multiplier

LXI H, 0000 : Product = 0

MVI B, 08H : Initialize counter with count 8

MULT: DAD H : Product = product x 2

RAL

JNC SKIP : Is carry from multiplier 1 ?

DAD D : Yes, Product =Product + Multiplicand

SKIP: DCR B : Is counter = zero

JNZ MULT : no, repeat

SHLD 2300H : Store the result

HLT : End of program

36. Statement:Divide the 16-bit unsigned number in memory locations 2200H and 2201H (most significant bits

in 2201H) by the B-bit unsigned number in memory location 2300H store the quotient in memory location

2400H and remainder in 2401H

Assumption: The most significant bits of both the divisor and dividend are zero.

Source program

MVI E, 00 : Quotient = 0

LHLD 2200H : Get dividend

LDA 2300 : Get divisor

MOV B, A : Store divisor

MVI C, 08 : Count = 8

NEXT: DAD H : Dividend = Dividend x 2

MOV A, E

RLC

MOV E, A : Quotient = Quotient x 2

MOV A, H

SUB B : Is most significant byte of Dividend > divisor

JC SKIP : No, go to Next step

MOV H, A : Yes, subtract divisor

INR E : and Quotient = Quotient + 1

SKIP:DCR C : Count = Count - 1

JNZ NEXT : Is count =0 repeat
MOV A, E

STA 2401H : Store Quotient

Mov A, H

STA 2410H : Store remainder

HLT : End of program

37. DAA instruction is not present. Write a sub routine which will perform the same task as DAA.

Sample Problem:

Execution of DAA instruction:

If the value of the low order four bits (03-00) in the accumulator is greater than 9 or if auxiliary carry flag

is set, the instruction adds 6 '(06) to the low-order four bits.

If the value of the high-order four bits (07-04) in the accumulator is greater than 9 or if carry flag is set,

the instruction adds 6(06) to the high-order four bits.

Source Program:

LXI SP, 27FFH : Initialize stack pointer

MOV E, A : Store the contents of accumulator

ANI 0FH : Mask upper nibble

CPI 0A H : Check if number is greater than 9

JC SKIP : if no go to skip

MOV A, E : Get the number

ADI 06H : Add 6 in the number

JMP SECOND : Go for second check

SKIP: PUSH PSW : Store accumulator and flag contents in stack

POP B : Get the contents of accumulator in B register and

flag register contents in C register

MOV A, C : Get flag register contents in accumulator

ANI 10H : Check for bit 4

JZ SECOND : if zero, go for second check

MOV A, E : Get the number

ADI 06 : Add 6 in the number

SECOND: MOV E, A : Store the contents of accumulator

ANI FOH : Mask lower nibble

RRC

RRC

RRC

RRC : Rotate number 4 bit right

CPI 0AH : Check if number is greater than 9

JC SKIPl : if no go to skip 1

MOV A, E : Get the number

ADI 60 H : Add 60 H in the number

JMP LAST : Go to last

SKIP1: JNC LAST : if carry flag = 0 go to last
MOV A, E : Get the number

ADI 60 H : Add 60 H in the number

LAST: HLT

38. tement:To test RAM by writing '1' and reading it back and later writing '0' (zero) and reading it back.

RAM addresses to be checked are 40FFH to 40FFH. In case of any error, it is indicated by writing 01H at

port 10H

Source Program:

LXI H, 4000H : Initialize memory pointer

BACK: MVI M, FFH : Writing '1' into RAM

MOV A, M : Reading data from RAM

CPI FFH : Check for ERROR

JNZ ERROR : If yes go to ERROR

INX H : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACK : If not last, repeat

LXI H, 4000H : Initialize memory pointer

BACKl: MVI M, OOH : Writing '0' into RAM

MOV A, M : Reading data from RAM

CPI OOH : Check for ERROR

INX H : Increment memory pointer

MOV A, H

CPI SOH : Check for last check

JNZ BACKl : If not last, repeat

HLT : Stop Execution

39. tement:Write an assembly language program to generate fibonacci number

Source Program:

MVI D, COUNT MVI

B, 00 MVI C, 01
Initialize counter
Initialize variable to store previous number
Initialize variable to store current number

MOV A, B :[Add two numbers]

BACK: ADD C :[Add two numbers]

MOV B, C : Current number is now previous number
MOV C, A : Save result as a new current number

DCR D : Decrement count

JNZ BACK : if count 0 go to BACK

HLT : Stop
40. tement:Write a program to generate a delay of 0.4 sec if the crystal frequency is 5 MHz

Calculation: In 8085, the operating frequency is half of the crystal

frequency,

ie.Operating frequency = 5/2 = 2.5 MHz

Time for one T -state =

Number of T-states required =

 = 1 x 106

Source Program:

LXI B, count : 16 - bit count

BACK: DCX B : Decrement count

MOV A, C

ORA B : Logically OR Band C

JNZ BACK : If result is not zero repeat

41. tement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

START:MVI B, 00 ; Flag = 0

LXI H, 4150 ; Count = length of array
MOV C, M

DCR C ; No. of pair = count -1
INX H ; Point to start of array

LOOP:MOV A, M ; Get kth element

INX H

CMP M ; Compare to (K+1) th element

JNC LOOP 1 ; No interchange if kth >= (k+1) th

MOV D, M ; Interchange if out of order

MOV M, A ;
DCR H

MOV M, D

INX H

MVI B, 01H ; Flag=1

LOOP 1:DCR C ; count down

JNZ LOOP ;

DCR B ; is flag = 1?

JZ START ; do another sort, if yes

HLT ; If flag = 0, step execution

42. tement: Transfer ten bytes of data from one memory to another memory block. Source memory block starts
from memory location 2200H where as destination memory block starts from memory location 2300H

Source Program:

LXI H, 4150 : Initialize memory pointer
MVI B, 08 : count for 8-bit

MVI A, 54

LOOP : RRC

JC LOOP1
MVI M, 00 : store zero it no carry
JMP COMMON

LOOP2: MVI M, 01 : store one if there is a carry

COMMON: INX H

DCR B : check for carry

JNZ LOOP

HLT : Terminate the program

43. tement: Program to calculate the factorial of a number between 0 to 8

Source program

LXI SP, 27FFH ; Initialize stack pointer

LDA 2200H ; Get the number

CPI 02H ; Check if number is greater than 1

JC LAST

MVI D, 00H ; Load number as a result

MOV E, A

DCR A

MOV C,A ; Load counter one less than number

CALL FACTO ; Call subroutine FACTO

XCHG ; Get the result in HL

SHLD 2201H ; Store result in the memory

JMP END

LAST: LXI H, 000lH ; Store result = 01

END: SHLD 2201H

HLT

44. tement:Write a program to find the Square Root of an 8 bit binary number. The binary number is stored in

memory location 4200H and store the square root in 4201H.

Source Program:

in D-reg

LDA 4200H : Get the given data(Y) in A register

MOV B,A : Save the data in B register

MVI C,02H : Call the divisor(02H) in C register

CALL DIV : Call division subroutine to get initial value(X)

REP: MOV E,D : Save the initial value in E-reg

MOV A,B : Get the dividend(Y) in A-reg
MOV C,D : Get the divisor(X) in C-reg

CALL DIV : Call division subroutine to get initial

value(Y/X) in D-reg

MOV A, D : Move Y/X in A-reg
ADD E : Get the((Y/X) + X) in A-reg
MVI C, 02H : Get the divisor(02H) in C-reg

CALL DIV : Call division subroutine to get ((Y/X) + X)/2

in D-reg.This is XNEW

MOV A, E : Get Xin A-reg

CMP D : Compare X and XNEW

JNZ REP : If XNEW is not equal to X, then repeat
STA 4201H : Save the square root in memory

HLT : Terminate program execution

45. tement:Write a simple program to Split a HEX data into two nibbles and store it in memory

Source Program:

LXI H, 4200H : Set pointer data for array

MOV B,M : Get the data in B-reg

MOV A,B : Copy the data to A-reg

ANI OFH : Mask the upper nibble
INX H : Increment address as 4201

MOV M,A : Store the lower nibble in memory
MOV A,B : Get the data in A-reg

ANI FOH : Bring the upper nibble to lower nibble position

RRC

RRC

RRC

RRC

INX H

MOV M,A : Store the upper nibble in memory

HLT : Terminate program execution

46. tement: Add two 4 digit BCD numbers in HL and DE register pairs and store result in memory locations,

2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

(HL) =3629 (DE)

=4738
Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1

:.add 06

61 + 06 = 67
Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so add 6. 7D + 06 = 83

Result = 8367

Source program

MOV A, L : Get lower 2 digits of no. 1

ADD E : Add two lower digits

DAA : Adjust result to valid BCD
STA 2300H : Store partial result

MOV A, H : Get most significant 2 digits of number

ADC D : Add two most significant digits

DAA : Adjust result to valid BCD

STA 2301H : Store partial result
HLT : Terminate program execution

47. tement: Subtract the BCD number stored in E register from the number stored in the D register.

Source Program:

MVI A,99H

SUB E : Find the 99's complement of subtrahend
INR A : Find 100's complement of subtrahend

ADD D : Add minuend to 100's complement of subtrahend

DAA : Adjust for BCD

HLT : Terminate program execution

48. tement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

MVI C, Multiplier : Load BCD multiplier

MVI B, 00 : Initialize counter

LXI H, 0000H : Result = 0000

MVI E, multiplicand : Load multiplicand

MVI D, 00H : Extend to 16-bits

BACK: DAD D : Result Result + Multiplicand

MOV A, L : Get the lower byte of the result

ADI, 00H
DAA : Adjust the lower byte of result to BCD.

MOV L, A : Store the lower byte of result

MOV A, H : Get the higher byte of the result
ACI, 00H

DAA : Adjust the higher byte of the result to BCD

MOV H, A : Store the higher byte of result.
MOV A, B : [Increment

ADI 01H : counter
DAA : adjust it to BCD and

MOV B,A : store it]

CMP C : Compare if count = multiplier

JNZ BACK : if not equal repeat

HLT : Stop

6. INSTRUCTION EXECUTION AND TIMING DIAGRAM:

Each instruction in 8085 microprocessor consists of two part- operation code (opcode) and operand. The opcode is a

command such as ADD and the operand is an object to be operated on, such as a byte or the content of a register.

Instruction Cycle: The time taken by the processor to complete the execution of an instruction. An instruction cycle

consists of one to six machine cycles.

Machine Cycle: The time required to complete one operation; accessing either the memory or I/O device. A machine cycle

consists of three to six T-states.

T-State: Time corresponding to one clock period. It is the basic unit to calculate execution of instructions or programs in a

processor.

To execute a program, 8085 performs various operations as:

 Opcode fetch

 Operand fetch

 Memory read/write

 I/O read/write

External communication functions are:

 Memory read/write

 I/O read/write

 Interrupt request acknowledge

Opcode Fetch Machine Cycle:

It is the first step in the execution of any instruction. The timing diagram of this cycle is given in Fig. 7.

The following points explain the various operations that take place and the signals that are changed during the execution of

opcode fetch machine cycle:

T1 clock cycle

i. The content of PC is placed in the address bus; AD0 - AD7 lines contains lower bit address and A8 – A15

contains higher bit address.

ii. IO/M signal is low indicating that a memory location is being accessed. S1 and S0 also changed to the levels as

indicated in Table 1.

iii. ALE is high, indicates that multiplexed AD0 – AD7 act as lower order bus.

T2 clock cycle

i. Multiplexed address bus is now changed to data bus.

ii. The RD signal is made low by the processor. This signal makes the memory device load the data bus with the

contents of the location addressed by the processor.

T3 clock cycle

i. The opcode available on the data bus is read by the processor and moved to the instruction register.

ii. The RD signal is deactivated by making it logic 1.

T4 clock cycle

i. The processor decode the instruction in the instruction register and generate the necessary control signals to

execute the instruction. Based on the instruction further operations such as fetching, writing into memory etc

takes place.

Fig. 7 Timing diagram for opcode fetch cycle

Memory Read Machine Cycle:

The memory read cycle is executed by the processor to read a data byte from memory. The machine cycle is exactly same

to opcode fetch except: a) It has three T-states b) The S0 signal is set to 0. The timing diagram of this cycle is given in Fig.

8.

Fig. 8 Timing diagram for memory read machine cycle

Memory Write Machine Cycle:

The memory write cycle is executed by the processor to write a data byte in a memory

location. The processor takes three T-states and WR signal is made low. The timing diagram of this cycle is given in Fig.

9.

I/O Read Cycle:

The I/O read cycle is executed by the processor to read a data byte from I/O port or from peripheral, which is I/O mapped

in the system. The 8-bit port address is placed both in the lower and higher order address bus. The processor takes three T-

states to execute this machine cycle. The timing diagram of this cycle is given in Fig. 10.

Fig. 9 Timing diagram for memory write machine cycle

Fig. 10 Timing diagram I/O read machine cycle

Instruction cycle in 8085 microprocessor

Time required to execute and fetch an entire instruction is called instruction cycle. It consists:

 Fetch cycle – The next instruction is fetched by the address stored in program counter (PC) and

then stored in the instruction register.

 Decode instruction – Decoder interprets the encoded instruction from instruction register.

 Reading effective address – The address given in instruction is read from main memory and

required data is fetched. The effective address depends on direct addressing mode or indirect

addressing mode.

 Execution cycle – consists memory read (MR), memory write (MW), input output read (IOR)

and input output write (IOW)

The time required by the microprocessor to complete an operation of accessing memory or input/output

devices is called machine cycle. One time period of frequency of microprocessor is called t-state. A t-state

is measured from the falling edge of one clock pulse to the falling edge of the next clock pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

Timing diagram for fetch cycle or opcode fetch:

Above diagram represents:

 05 – lower bit of address where opcode is stored. Multiplexed address and data bus AD0-AD7 are

used.

 20 – higher bit of address where opcode is stored. Multiplexed address and data bus AD8-AD15

are used.

 ALE – Provides signal for multiplexed address and data bus. If signal is high or 1, multiplexed

address and data bus will be used as address bus. To fetch lower bit of address, signal is 1 so that

multiplexed bus can act as address bus. If signal is low or 0, multiplexed bus will be used as data

bus. When lower bit of address is fetched then it will act as data bus as the signal is low.

 RD (low active) – If signal is high or 1, no data is read by microprocessor. If signal is low or 0,

data is read by microprocessor.

 WR (low active) – If signal is high or 1, no data is written by microprocessor. If signal is low or

0, data is written by microprocessor.

 IO/M (low active) and S1, S0 – If signal is high or 1, operation is performing on input output. If

signal is low or 0, operation is performing on memory.

1. Introduction to Microprocessor
Definition:

 “The microprocessor is a multipurpose, clock driven, register based, digital-integrated
circuit which accepts binary data as input, processes it according to instructions stored in
its memory, and provides results as output.”

 “Microprocessor is a computer Central Processing Unit (CPU) on a single chip that
contains millions of transistors connected by wires.”

Introduction:
 A microprocessor is designed to perform arithmetic and logic operations that make use

of small number-holding areas called registers.
 Typical microprocessor operations include adding, subtracting, comparing two numbers,

and fetching numbers from one area to another.

2. Components of Microprocessor
 Microprocessor is capable of performing various computing functions and making

decisions to change the sequence of program execution.
 The microprocessor can be divided into three segments as shown in the figure,

Arithmetic/logic unit (ALU), register array, and control unit.
 These three segment is responsible for all processing done in a computer

Figure: Components of Microprocessor

Arithmetic and logic unit (ALU)
 It is the unit of microprocessor where various computing functions are performed on

the data.
 It performs arithmetic operations such as addition, subtraction, and logical operations

such as OR,AND, and Exclusive-OR.
 It is also known as the brain of the computer system.

Arithmetic
and Logical
Unit (ALU)

Register
Array

Control Unit

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Register array
 It is the part of the register in microprocessor which consists of various registers

identified by letters such as B, C, D, E, H, and L.
 Registers are the small additional memory location which are used to store and transfer

data and programs that are currently being executed.

Control unit
 The control unit provides the necessary timing and control signals to all the operations

in the microcomputer.
 It controls and executes the flow of data between the microprocessor, memory and

peripherals.
 The control bus is bidirectional and assists the CPU in synchronizing control signals to

internal devices and external components.
 This signal permits the CPU to receive or transmit data from main memory.

3. System bus (data, address and control bus).
 This network of wires or electronic pathways is called the 'Bus'.
 A system bus is a single computer bus that connects the major components of a computer

system.
 It combines the functions of a data bus to carry information, an address bus to determine

where it should be sent, and a control bus to determine its operation.
 The technique was developed to reduce costs and improve modularity.

Figure: System Bus

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Address Bus
 It is a group of wires or lines that are used to transfer the addresses of Memory or I/O

devices.
 It is unidirectional.
 The width of the address bus corresponds to the maximum addressing capacity of the

bus, or the largest address within memory that the bus can work with.
 The addresses are transferred in binary format, with each line of the address bus carrying

a single binary digit.
 Therefore the maximum address capacity is equal to two to the power of the number of

lines present (2^lines).
Data Bus

 It is used to transfer data within Microprocessor and Memory/Input or Output devices.
 It is bidirectional as Microprocessor requires to send or receive data.
 Each wire is used for the transfer of signals corresponding to a single bit of binary data.
 As such, a greater width allows greater amounts of data to be transferred at the same

time.
Control Bus

 Microprocessor uses control bus to process data, i.e. what to do
with the selected memory location.

 Some control signals are Read, Write and Opcode fetch etc.
 Various operations are performed by microprocessor with the help of control bus.
 This is a dedicated bus, because all timing signals are generated according to control signal.

4. Microprocessor systems with bus organization

Figure: Microprocessor systems with bus organization

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

 To design any meaningful application microprocessor requires support of other auxiliary
devices.

 In most simplified form a microprocessor based system consist of a microprocessor, I/O
(input/output) devices and memory.

 These components are interfaced (connected) with microprocessor over a common
communication path called system bus. Typical structure of a microprocessor based
system is shown in Figure.

 Here, microprocessor is master of the system and responsible for executing the program
and coordinating with connected peripherals as required.

 Memory is responsible for storing program as well as data. System generally consists of
two types of memories ROM (Read only and non-volatile) and RAM (Read/Write and
volatile).

 I/O devices are used to communicate with the environment. Keyboard can be example of
input devices and LED, LCD or monitor can be example of output device.

 Depending on the application level of sophistication varies in a microprocessor based
systems. For example: washing machine, computer.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1. Explain Classification of Memory

Ans.

Figure: Classification of Memory
ROM (Read Only Memory):
The first classification of memory is ROM. The data in this memory can only be read, no writing
is allowed. It is used to store permanent programs. It is a nonvolatile type of memory.

The classification of ROM memory is as follows:
1. Masked ROM: the program or data are permanently installed at the time of

manufacturing as per requirement. The data cannot be altered. The process of
permanent recording is expensive but economic for large quantities.

2. PROM (Programmable Read Only Memory): The basic function is same as that of
masked ROM. but in PROM, we have fuse links. Depending upon the bit pattern, the
fuse can be burnt or kept intact. This job is performed by PROM programmer.
To do this, it uses high current pulse between two lines. Because of high current, the
fuse will get burnt; effectively making two lines open. Once a PROM is programmed
we cannot change connections, only a facility provided over masked ROM is, the user
can load his program in it. The disadvantage is a chance of re-growing of the fuse and
changes the programmed data because of aging.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

3. EPROM (Erasable Programmable Read Only Memory): the EPROM is programmable
by the user. It uses MOS circuitry to store data. They store 1’s and 0’s in form of charge.
The information stored can be erased by exposing the memory to ultraviolet light
which erases the data stored in all memory locations. For ultraviolet light, a quartz
window is provided which is covered during normal operation. Upon erasing it can be
reprogrammed by using EPROM programmer. This type of memory is used in a project
developed and for experiment use. The advantage is it can be programmed erased and
reprogrammed. The disadvantage is all the data get erased even if you want to change
single data bit.

4. EEPROM: EEPROM stands for electrically erasable programmable read only memory.
This is similar to EPROM except that the erasing is done by electrical signals instead of
ultraviolet light. The main advantage is the memory location can be selectively erased
and reprogrammed. But the manufacturing process is complex and expensive so do
not commonly used.

R/W Memory (Read/Write Memory):

The RAM is also called as read/write memory. The RAM is a volatile type of memory. It
allows the programmer to read or write data. If the user wants to check the execution of any
program, user feeds the program in RAM memory and executes it. The result of execution is
then checked by either reading memory location contents or by register contents.

Following is the classification of RAM memory.
It is available in two types:

1. SRAM (Static RAM): SRAM consists of the flip-flop; using either transistor or MOS.
for each bit we require one flip-flop. Bit status will remain as it is; unless and until
you perform next write operation or power supply is switched off.

Advantages of SRAM:
 Fast memory (less access time)
 Refreshing circuit is not required.
Disadvantages of SRAM:
 Low package density
 Costly

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

2. DRAM (Dynamic RAM): In this type of memory a data is stored in form of charge in
capacitors. When data is 1, the capacitor will be charged and if data is 0, the
capacitor will not be charged. Because of capacitor leakage currents, the data will
not be held by these cells. So the DRAMs require refreshing of memory cells. It is a
process in which same data is read and written after a fixed interval.

Advantages of DRAM:

 High package density
 Low cost
Disadvantages of DRAM:
 Required refreshing circuit to maintain or refresh charge on the capacitor, every

after few milliseconds.

Secondary Memory

 Magnetic Disk: The Magnetic Disk is Flat, circular platter with metallic coating that
is rotated beneath read/write heads. It is a Random access device; read/write head
can be moved to any location on the platter

 Floppy Disk: These are small removable disks that are plastic coated with magnetic
recording material. Floppy disks are typically 3.5″ in size (diameter) and can hold
1.44 MB of data. This portable storage device is a rewritable media and can be
reused a number of times. Floppy disks are commonly used to move files between
different computers. The main disadvantage of floppy disks is that they can be
damaged easily and, therefore, are not very reliable. The following figure shows
an example of the floppy disk. Figure 3 shows a picture of the floppy disk.

 Hard Disk: Another form of auxiliary storage is a hard disk. A hard disk consists of
one or more rigid metal plates coated with a metal oxide material that allows data
to be magnetically recorded on the surface of the platters. The hard disk platters
spin at 5 a high rate of speed, typically 5400 to 7200 revolutions per minute
(RPM).Storage capacities of hard disks for personal computers range from 10 GB
to 120 GB (one billion bytes are called a gigabyte).

 Optical Disks: Optical Mass Storage Devices Store bit values as variations in light
reflection. They have higher area density & longer data life than magnetic storage.
They are also standardized and relatively inexpensive. Their Uses: read-only
storage with low performance requirements, applications with high capacity
requirements & where portability in a standardized format is needed.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Types of Optical Disk
1. CD-ROM (read only)
2. CD-R: (record) to a CD
3. CD-RW: can write and erase CD to reuse it (re-writable)
4. DVD(Digital Video Disk)

2. Explain I/O devices and their Interfacing
Ans. Input / Output (I/O)

 MPU communicates with outside word through I/O device.
 There are 2 different methods by which MPU identifies and communicates With I/O

devices these methods are:
1- Direct I/O (Peripheral)
2- Memory-Mapped I/O

The methods differ in terms of the
 No. of address lines used in identifying an I/O device.
 Type of control lines used to enable the device.
 Instructions used for data transfer.

Direct I/O (Peripheral):-
 This method uses two instructions (IN & OUT) for data transfer.
 MPU uses 8 address lines to send the address of I/O device (can identify 256 input

devices & 256 output devices).
 The (I/P & O/P devices) can be differentiated by control signals I/O Read (IOR) and I/O

Write (IOW).
 The steps in communicating with an I/O device are similar to those in communicating

with memory and can be summarized as follows:
1- The MPU places an 8-bit device address on address bus then decoded.
2- The MPU sends a control signal (IOR or IOW) to enable the I/O device.
3- Data are placed on the data bus for transfer.

Memory-Mapped I/O:-
 The MPU uses 16 address lines to identify an I/O device.
 This is similar to communicating with a memory location.
 Use the same control signals (MEMR or MEMW) and instructions as those of memory.
 The MPU views these I/O devices as if they were memory locations.
 There are no special I/O instructions.
 It can identify 64k address shared between memory & I/O devices.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1. Write down main features of 8085 microprocessor.
 It is an 8 bit microprocessor.
 It is manufactured with N-MOS technology.
 It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB) memory locations

through A0-A15
 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 – AD7
 Data bus is a group of 8 lines D0 – D7
 It supports external interrupt request. .
 A 16 bit program counters (PC)
 A 16 bit stack pointer (SP)
 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.
 It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.
 It is enclosed with 40 pins DIP (Dual in line package).

2. Explain 8085 microprocessor architecture.

Figure: 8085 microprocessor architecture.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

 The architecture of microprocessor 8085 can be divided into seven parts as follows:

Register Unit:

General Purpose Data Register
 8085 has six general purpose data registers to store 8-bit data.
 These registers are named as B, C, D, E, H and L as shown in fig. 1.
 The user can use these registers to store or copy a data temporarily during the execution of a program

by using data transfer instructions.
 These registers are of 8 bits but whenever the microprocessor has to handle 16-bit data, these registers

can be combined as register pairs – BC, DE and HL.
 There are two internal registers – W and X. These registers are only for internal operation like execution

of CALL and XCHG instructions and not available to the user.

Program Counter (PC)
 16-bit register deals with sequencing the execution of instructions.
 This register is a memory pointer.
 Memory locations have 16-bit addresses which are why this is a 16-bit register.
 The microprocessor uses this register to sequence the execution of the instructions.
 The function of the program counter is to point to the memory address from which the next byte is to be

fetched.
 When a byte (machine code) is being fetched, the program counter is incremented by one to point to

the next memory location.

Stack Pointer (SP)
 SP is also a 16-bit register used as a memory pointer.
 It points to a memory location in R/W memory, called the stack.
 The beginning of the stack is defined by loading 16-bit address in the stack pointer.

MUX/DEMUX unit
 This unit is used to select a register out of all the available registers.
 This unit behaves as a MUX when data is going from the register to the internal data bus.
 It behaves as a DEMUX when data is coming to a register from the internal data bus of the

microprocessor.
 The register select will behave as the function selection lines of the MUX/DEMUX.

Address Buffer Register & Data/Address Buffer Register
 These registers hold the address/data, received from PC/internal data bus and then load the external

address and data buses.
 These registers actually behave as the buffer stage between the microprocessor and external system

buses.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Control Unit:
 The control unit generates signals within microprocessor to carry out the instruction, which has been

decoded.
 In reality it causes connections between blocks of the microprocessor to be opened or closed, so that

the data goes where it is required and the ALU operations occur.
 The control unit itself consists of three parts; the instruction registers (IR), instruction decoder and

machine cycle encoder and timing and control unit.

Instruction Register
 This register holds the machine code of the instruction.
 When microprocessor executes a program it reads the opcode from the memory, this opcode is stored in

the instruction register.

Instruction Decoder & Machine Cycle Encoder
 The IR sends the machine code to this unit.
 This unit, as its name suggests, decodes the opcode and finds out what is to be done in response of the

coming opcode and how many machine cycles are required to execute this instruction.

Timing & Control unit
 The control unit generates signals within microprocessor to carry out the instruction, which has been

decoded.
 In reality, it causes certain connections between blocks of the microprocessor to be opened or closed, so

that the data goes where it is required and the ALU operations occur.

Arithmetic & Logical Unit:
 The ALU performs the actual numerical and logical operation such as ‘add’, ‘subtract’, ‘AND’, ‘OR’, etc.
 ALU uses data from memory and from accumulator to perform the arithmetic operations and always

stores the result of the operation in accumulator.
 ALU consists of accumulator, flag register and temporary register.

Accumulator
 The accumulator is an 8-bit register that is a part of ALU.
 This register is used to store 8-bit data and perform arithmetical and logical operations.
 The result of an operation is stored in the accumulator.
 It is also identified as register A.

Flags register
 Flag register includes five flip-flops, which are set or reset after an operation according to the data

conditions of the result in the accumulator and other registers.
 They are called zero (Z), carry (CY), sign (S), parity (P) and auxiliary carry (AC) flags; their bit positions in

the flag register are shown in fig.
 The microprocessor uses these flags to set and test data conditions.

Interrupt Control
 The interrupt control unit has 5 interrupt inputs TRAP,RST 7.5, RST 6.5, RST 5.5 & INTR and one

acknowledge signal INTA.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

 It controls the interrupt activity of 8085 microprocessor.

Serial IO control
 8085 serial IO control provides two lines, SOD and SID for serial communication.
 The serial output data (SOD) line is used to send data serially and serial input data line (SID) is used to

receive data serially.

3. Explain Flags Registers in 8085
 Flag register includes five flip-flops, which are set or reset after an operation according to the data

conditions of the result in the accumulator and other registers.
 They are called zero (Z), carry (CY), sign (S), parity (P) and auxiliary carry (AC) flags; their bit positions in

the flag register are shown in fig.
 The microprocessor uses these flags to set and test data conditions.

Figure: Flags registers in 8085.

 The flags are stored in the 8-bit register so that the programmer can examine these flags by accessing
the register through an instruction.

 These flags have critical importance in the decision-making process of the microprocessor.
 The conditions (set or reset) of the flags are tested through the software instructions.
 For instance, JC (jump on carry) is implemented to change the sequence of a program when CY flag is

set.

Z (Zero) Flag:
 This flag indicates whether the result of mathematical or logical operation is zero or not.
 If the result of the current operation is zero, then this flag will be set, otherwise reset.

CY (Carry) Flag:
 This flag indicates, whether, during an addition or subtraction operation, carry or borrow is generated or

not, if generated then this flag bit will be set.

AC (Auxiliary Carry) Flag:
 It shows carry propagation from D3 position to D4 position.

1 0 00 11 0 0

0 0 01 01 1 1

1 0 11 10 1 1

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Figure: Auxiliary Carry.

 As shown in the fig., a carry is generated from D3 bit position and propagates to the D4 position. This
carry is called auxiliary carry.

S (Sign) Flag:
 Sign flag indicates whether the result of a mathematical operation is negative or positive.
 If the result is positive, then this flag will reset and if the result is negative this flag will be set.
 This bit, in fact, is a replica of the D7 bit.

P (Parity) Flag:
 Parity is the number of 1’s in a number.
 If the number of 1’s in a number is even then that number is known as even parity number.
 If the number of 1’s in a number is odd then that number is known as an odd parity number.
 This flag indicates whether the current result is of even parity (set) or of odd parity (reset).

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

4. Explain 8085 pin diagram.

Figure: 8085 pin diagram.

 All signals can be classified into six groups:
1. Address Bus
2. Data Bus
3. Control & Status Signals
4. Power Supply & Frequency signals
5. Externally initiated signals
6. Serial I/O Ports

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1) Address Bus (pin 12 to 28)
 16 signal lines are used as address bus.
 However these lines are split into two segments: A15 - A8 and AD7 - AD0

 A15 - A8 are unidirectional and are used to carry high-order address of 16-bit address.
 AD7 - AD0 are used for dual purpose.

2) Data Bus/ Multiplexed Address (pin 12 to 19)
 Signal lines AD7-AD0 are bidirectional and serve dual purpose.
 They are used as low-order address bus as well as data bus.
 The low order address bus can be separate from these signals by using a latch.

3) Control & Status Signals
 To identify nature of operation
 Two Control Signals

1) RD’ (Read-pin 32)
 This is a read control signal (active low)
 This signal indicates that the selected I/O or Memory device is to be read & data are available on

data bus.
2) WR’ (Write-pin 31)
 This is a write control signal (active low)
 This signal indicates that the selected I/O or Memory device is to be write.

 Three Status Signals
1) S1 (pin 33)
2) S0 (pin 29)
 S1 and S0 status signals can identify various operations, but they are rarely used in small systems.

S1 S0 Mode
0 0 HLT
0 1 WRITE
1 0 READ
1 1 OPCODE FETCH

3) IO/M’ (pin 34)
 This is a status signal used to differentiate I/O and memory operation
 When it is high, it indicates an I/O operation
 When it is low, it indicates a memory operation
 This signal is combined with RD’ and WR’ to generate I/O & memory control signals

 To indicate beginning of operation
o One Special Signal called ALE (Address Latch Enable-Pin 30)
o This is positive going pulse generated every time the 8085 begins an operation (machine cycle)
o It indicates that the bits on AD7-AD0 are address bits
o This signal is used primarily to latch the low-address from multiplexed bus & generate a separate set

of address lines A7-A0.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

4) Power Supply & Frequency Signal
 VccPin no. 40, +5V Supply
 Vss Pin no.20, Ground Reference
 X1, X2 Pin no.1 & 2, Crystal Oscillator is connected at these two pins. The frequency is internally

divided by two;
o Therefore, to operate a system at 3MHz, the crystal should have a frequency of 6MHz.

 CLK (OUT) Clock output. Pin No.37: This signal can be used as the system clock for other devices.

5) Externally Initiated Signals including Interrupts
 INTR (Input) Interrupt Request. It is used as general purpose interrupt
 INTA’ (Output) Interrupt Acknowledge. It is used to acknowledge an interrupt.
 RST7.5, RST6.5, RST5.5 (Input) Restart Interrupts.

o These are vector interrupts that transfer the program control to specific memory locations.
o They have higher priorities than INTR interrupt.
o Among these 3 interrupts, the priority order is RST7.5, RST6.5, RST5.5

 TRAP (Input) This is a non maskable interrupt & has the highest priority.
 HOLD (Input) This signal indicates that a peripheral such as DMA Controller is requesting the use of

address & data buses
 HLDA (Output) Hold Acknowledge. This signal acknowledges the HOLD request
 READY (Input) This signal is used to delay the microprocessor read or write cycles until as low-

responding peripheral is ready to send or accept data. When the signal goes low, the microprocessor
waits for an integral no. of clock cycles until it goes high.

 RESET IN’ (Input) When the signal on this pin goes low, the Program Counter is set to zero, the buses
are tri-stated & microprocessor is reset.

 RESET OUT (Output) This signal indicates that microprocessor is being reset. The signal can be used to
reset other devices.

6) Serial I/O Ports
 Two pins for serial transmission

1) SID (Serial Input Data-pin 5)
2) SOD (Serial Output Data-pin 4)

 In serial transmission, data bits are sent over a single line, one bit at a time.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

5. Explain Instruction Cycle
 Instruction Cycle is defined as time required to complete execution of an instruction.
 8085 instruction cycle consists of 1 to 6 Machine Cycles or 1 to 6 operations.

Figure: Instruction Cycle.

6. Explain Machine Cycle
 Machine Cycle is defined as time required by the microprocessor to complete operation of accessing

memory device or I/O device.
 This cycle may consist 3 to 6 T-states.
 The basic microprocessor operation such as reading a byte from I/O port or writing a byte to memory is

called as machine cycle.

Figure: Machine Cycle.

7. Explain T-States
 T-States are defined as one subdivision of operation performed in one clock period.
 These sub divisions are internal states synchronized with system clock & each T-state is precisely equal

to one clock period.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Figure: T-States.

8. Compare Instruction Cycle, Machine Cycle and T-States

Figure: Comparison between Instruction Cycle, Machine Cycle and T-States.

 Instruction Cycle: Time required to complete execution of an instruction.
 Machine Cycle: Time required by the microprocessor to complete an operation.
 T-States: One subdivision of operation performed in one clock period.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9. Explain 8085 Programming Model

Figure: 8085 Programming Model.

Registers
 6 general purpose registers to store 8-bit data B, C, D, E, H & L.
 Can be combined as register pairs – BC, DE, and HL to perform 16-bit operations.
 Used to store or copy data using data copy instructions.

Accumulator
 8 - bit register, identified as A
 Part of ALU
 Used to store 8-bit data to perform arithmetic & logical operations.
 Result of operation is stored in it.

Flag Register
 ALU has 5 Flag Register that set/reset after an operation according to data conditions of the result in

accumulator & other registers.
 Helpful in decision making process of Microprocessor
 Conditions are tested through software instructions
 For e.g.
 JC (Jump on Carry) is implemented to change the sequence of program when CY is set.

Program Counter
 16-bit registers used to hold memory addresses.
 Size is 16-bits because memory addresses are of 16-bits.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

 Microprocessor uses PC register to sequence the execution of instructions.
 Its function is to point to memory address from which next byte is to be fetched.
 When a byte is being fetched, PC is incremented by 1 to point to next memory location.

Stack Pointer
 Used as memory pointer
 Points to the memory location in R/W memory, called Stack.
 Beginning of stack is defined by loading a 16-bit address in the stack pointer.

10. Explain Bus Organization of 8085

Figure: Bus Organization of 8085.

Address Bus
 Group of 16 lines generally identified as A0 to A15.
 It is unidirectional i.e. bits flow from microprocessor to peripheral devices.
 16 address lines are capable of addressing 65536 memory locations.
 So, 8085 has 64K memory locations.

Data Bus
 Group of 8 lines identified as D0 to D7.
 They are bidirectional i.e. data flow in both directions between microprocessor, memory & peripheral.
 8 data lines enable microprocessor to manipulate data ranging from 00H to FFH (28=256 numbers).
 Largest number appear on data bus is 1111 1111 => (255)10.
 As Data bus is of 8-bit, 8085 is known as 8-bit Microprocessor.

Control Bus
 It comprises of various single lines that carry synchronization, timing & control signals.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

 These signals are used to identify a device type with which MPU intends to communicate.

11. Explain Demultiplexing AD0-AD7

Figure: Demultiplexing AD0-AD7.

 The higher-order bus remains on the bus for three clock periods. However, the low-order address is lost
after the first clock period.

 This address need to be latched and used for identifying the memory address. If the bus AD7-AD0 is used
to identify the memory location (2005H), the address will change to 204FH after the first clock period.

 Figure shows a schematic that uses a latch and the ALE signal to demultiplex the bus.
 The bus AD7-AD0 is connected as the input to the latch.
 The ALE signal is connected to the Enable pin of the latch, and the output control signal of the latch is

grounded.
 Figure shows that the ALE goes high during T1. And during T1 address of lower-order address bus is store

into the latch.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

12. Explain Memory Interfacing
 When we are executing any instruction, we need the microprocessor to access the memory for reading

instruction codes and the data stored in the memory.
 For this, both the memory and the microprocessor requires some signals to read/write to/from registers.
 The interfacing circuit therefore should be designed in such a way that it matches the memory signal

requirements with the signals of the microprocessor.

Memory Read Cycle

Figure: Memory Read Cycle.

 It is used to fetch one byte from the memory.
 It requires 3 T-States.
 It can be used to fetch operand or data from the memory.
 During T1, A8-A15 contains higher byte of address. At the same time ALE is high. Therefore Lower byte

of address A0-A7 is selected from AD0-AD7.
 Since it is memory ready operation, IO/M (bar) goes low.
 During T2 ALE goes low, RD (bar) goes low. Address is removed from AD0-AD7 and data D0-D7 appears

on AD0-AD7.
 During T3, Data remains on AD0-AD7 till RD (bar) is at low signal.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Memory Write Cycle

Figure: Memory Write Cycle.

 It is used to send one byte into memory.
 It requires 3 T-States.
 During T1, ALE is high and contains lower address A0-A7 from AD0-AD7.
 A8-A15 contains higher byte of address.
 As it is memory operation, IO/M (bar) goes low.
 During T2, ALE goes low, WR (bar) goes low and Address is removed from AD0-AD7 and then data

appears on AD0-AD7.
 Data remains on AD0-AD7 till WR (bar) is low.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

13. Explain how Control Signals Generated in 8085

Figure: Control Signals Generated in 8085.

 Figure shows that four different control signals are generated by combining the signals RD (bar), WR
(bar), and IO/M (bar).

 The signal IO/M (bar) goes low for the memory operation. This signal is ANDed with RD (bar) and WR
(bar) signals b using the 74LS32 quadruple two-input OR gates, as shown in figure 4.5.

 The OR gates are functionally connected as negative NAND gates. When both input signals go low, the
output of the gates go low and generate MEMR (bar) and MEMW (bar) control signals.

 When the IO/M (bar) signal goes high, it indicates the peripheral I/O operation.
 Figure shows that this signal is complemented using the Hex inverter 74LS04 and ANDed with the RD

(bar) and WR (bar) signals to generate IOR (bar) and IOW (bar) control signals.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1. 8085 instruction set.

Sr. Instruction Description Example

DATA TRANSFER INSTRUCTIONS
1. MOV Rd, Rs

MOV M, Rs

MOV Rs, M

This instruction copies the contents of the source
register into the destination register; the contents of
the source register are not altered. If one of the
operands is a memory location, its location is
specified by the contents of the HL registers.

MOV B, C
MOV B, M

2. MVI Rd, data
MVI M, data

The 8-bit data is stored in the destination register or
memory. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

MVI B, 57H
MVI M, 57H

3. LDA 16-bit address The contents of a memory location, specified by a 16-
bit address in the operand, are copied to the
accumulator. The contents of the source are not
altered.

LDA 2034H

4. LDAX B/D Reg. pair The contents of the designated register pair point to
a memory location. This instruction copies the
contents of that memory location into the
accumulator. The contents of either the register pair
or the memory location are not altered.

LDAX B

5. LXI Reg.-pair, 16-bit data The instruction loads 16-bit data in the register pair
designated in the operand.

LXI H, 2034H
LXI H, XYZ

6. LHLD 16-bit address The instruction copies the contents of the memory
location pointed out by the 16-bit address into
register L and copies the contents of the next memory
location into register H. The contents of source
memory locations are not altered.

LHLD 2040H

7. STA 16-bit address The contents of the accumulator are copied into the
memory location specified by the operand. This is a
3-byte instruction, the second byte specifies the low-
order address and the third byte specifies the high-
order address.

STA 4350H

8. STAX Reg. pair The contents of the accumulator are copied into the
memory location specified by the contents of the
operand (register pair). The contents of the
accumulator are not altered.

STAX B

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

Sr. Instruction Description Example

9. SHLD 16-bit address The contents of register L are stored into the memory
location specified by the 16-bit address in the
operand and the contents of H register are stored
into the next memory location by incrementing the
operand. The contents of registers HL are not altered.
This is a 3-byte instruction, the second byte specifies
the low-order address and the third byte specifies the
high-order address.

SHLD 2470H

10. XCHG The contents of register H are exchanged with the
contents of register D, and the contents of register L
are exchanged with the contents of register E.

XCHG

11. SPHL The instruction loads the contents of the H and L
registers into the stack pointer register, the contents
of the H register provide the high-order address and
the contents of the L register provide the low-order
address. The contents of the H and L registers are not
altered.

SPHL

12. XTHL The contents of the L register are exchanged with the
stack location pointed out by the contents of the
stack pointer register. The contents of the H register
are exchanged with the next stack location (SP+1);
however, the contents of the stack pointer register
are not altered.

XTHL

13. PUSH Reg. pair The contents of the register pair designated in the
operand are copied onto the stack in the following
sequence. The stack pointer register is decremented
and the contents of the high order register (B, D, H,
A) are copied into that location. The stack pointer
register is decremented again and the contents of the
low-order register (C, E, L, flags) are copied to that
location.

PUSH B
PUSH A

14. POP Reg. pair The contents of the memory location pointed out by
the stack pointer register are copied to the low-order
register (C, E, L, status flags) of the operand. The stack
pointer is incremented by 1 and the contents of that
memory location are copied to the high-order
register (B, D, H, A) of the operand. The stack pointer
register is again incremented by 1.

POP H
POP A

15. OUT 8-bit port address The contents of the accumulator are copied into the
I/O port specified by the operand.

OUT F8H

16. IN 8-bit port address The contents of the input port designated in the
operand are read and loaded into the accumulator.

IN 8CH

ARITHMETIC INSTRUCTIONS

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

3

Sr. Instruction Description Example

17. ADD R
ADD M

The contents of the operand (register or memory) are
added to the contents of the accumulator and the
result is stored in the accumulator. If the operand is a
memory location, its location is specified by the
contents of the HL registers. All flags are modified to
reflect the result of the
addition.

ADD B
ADD M

18. ADC R
ADC M

The contents of the operand (register or memory)
and the Carry flag are added to the contents of the
accumulator and the result is stored in the
accumulator. If the operand is a memory location, its
location is specified by the contents of the HL
registers. All flags are modified to reflect the result of
the addition.

ADC B
ADC M

19. ADI 8-bit data The 8-bit data (operand) is added to the contents of
the accumulator and the result is stored in the
accumulator. All flags are modified to reflect the
result of the addition.

ADI 45H

20. ACI 8-bit data The 8-bit data (operand) and the Carry flag are added
to the contents of the accumulator and the result is
stored in the accumulator. All flags are modified to
reflect the result of the addition.

ACI 45H

21. DAD Reg. pair The 16-bit contents of the specified register pair are
added to the contents of the HL register and the sum
is stored in the HL register. The contents of the source
register pair are not altered. If the result is larger than
16 bits, the CY flag is set. No other flags are affected.

DAD H

22. SUB R
SUB M

The contents of the operand (register or memory) are
subtracted from the contents of the accumulator, and
the result is stored in the accumulator. If the operand
is a memory location, its location is specified by the
contents of the HL registers. All flags are modified to
reflect the result of the subtraction.

SUB B
SUB M

23. SBB R
SBB M

The contents of the operand (register or memory)
and the Borrow flag are subtracted from the contents
of the accumulator and the result is placed in the
accumulator. If the operand is a memory location, its
location is specified by the contents of the HL
registers. All flags are modified to reflect the result of
the subtraction.

SBB B
SBB M

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

4

Sr. Instruction Description Example

24. SUI 8-bit data The 8-bit data (operand) is subtracted from the
contents of the accumulator and the result is stored
in the accumulator. All flags are modified to reflect
the result of the subtraction.

SUI 45H

25. SBI 8-bit data The 8-bit data (operand) and the Borrow flag are
subtracted from the contents of the accumulator and
the result is stored in the accumulator. All flags are
modified to reflect the result of the subtraction.

SBI 45H

26. INR R
INR M

The contents of the designated register or memory
are incremented by 1 and the result is stored in the
same place. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

INR B
INR M

27. INX R The contents of the designated register pair are
incremented by 1 and the result is stored in the same
place.

INX H

28. DCR R
DCR M

The contents of the designated register or memory
are decremented by 1 and the result is stored in the
same place. If the operand is a memory location, its
location is specified by the contents of the HL
registers.

DCR B
DCR M

29. DCX R The contents of the designated register pair are
decremented by 1 and the result is stored in the same
place.

DCX H

30. DAA The contents of the accumulator are changed from a
binary value to two 4-bit binary coded decimal (BCD)
digits. This is the only instruction that uses the
auxiliary flag to perform the binary to BCD
conversion, and the conversion procedure is
described below. S, Z, AC, P, CY flags are altered to
reflect the results of the operation.

If the value of the low-order 4-bits in the accumulator
is greater than 9 or if AC flag is set, the instruction
adds 6 to the low-order four bits.

If the value of the high-order 4-bits in the
accumulator is greater than 9 or if the Carry flag is set,
the instruction adds 6 to the high-order four bits.

DAA

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

5

Sr. Instruction Description Example

BRANCHING INSTRUCTIONS
31. JMP 16-bit address The program sequence is transferred to the memory

location specified by the 16-bit address given in the
operand.

JMP 2034H
JMP XYZ

Jump conditionally The program sequence is transferred to the memory location specified
by the 16-bit address given in the operand based on the specified flag
of the PSW as described below.

32. JC 16-bit address Jump on Carry, Flag Status: CY=1 JC 2050H
33. JNC 16-bit address Jump on no Carry, Flag Status: CY=0 JNC 2050H
34. JP 16-bit address Jump on positive, Flag Status: S=0 JP 2050H
35. JM 16-bit address Jump on minus, Flag Status: S=1 JM 2050H
36. JZ 16-bit address Jump on zero, Flag Status: Z=1 JZ 2050H
37. JNZ 16-bit address Jump on no zero, Flag Status: Z=0 JNZ 2050H
38. JPE 16-bit address Jump on parity even, Flag Status: P=1 JPE 2050H
39. JPO 16-bit address Jump on parity odd, Flag Status: P=0 JPO 2050H

40. CALL 16-bit address The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand. Before the transfer, the address of the next
instruction after CALL (the contents of the program
counter) is pushed onto the stack.

CALL 2034H
CALL XYZ

Call conditionally The program sequence is transferred to the memory location specified
by the 16-bit address given in the operand based on the specified flag
of the PSW as described below. Before the transfer, the address of the
next instruction after the call (the contents of the program counter) is
pushed onto the stack.

41. CC 16-bit address Call on Carry, Flag Status: CY=1 CC 2050H
42. CNC 16-bit address Call on no Carry, Flag Status: CY=0 CNC 2050H
43. CP 16-bit address Call on positive, Flag Status: S=0 CP 2050H
44. CM 16-bit address Call on minus, Flag Status: S=1 CM 2050H
45. CZ 16-bit address Call on zero, Flag Status: Z=1 CZ 2050H
46. CNZ 16-bit address Call on no zero, Flag Status: Z=0 CNZ 2050H
47. CPE 16-bit address Call on parity even, Flag Status: P=1 CPE 2050H
48. CPO 16-bit address Call on parity odd, Flag Status: P=0 CPO 2050H

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

6

Sr. Instruction Description Example

49. RET The program sequence is transferred from the
subroutine to the calling program. The two bytes
from the top of the stack are copied into the program
counter, and program execution begins at the new
address.

RET

Return from subroutine
conditionally

The program sequence is transferred from the subroutine to the calling
program based on the specified flag of the PSW as described below.
The two bytes from the top of the stack are copied into the program
counter, and program execution begins at the new address.

50. RC Return on Carry, Flag Status: CY=1 RC
51. RNC Return on no Carry, Flag Status: CY=0 RNC
52. RP Return on positive, Flag Status: S=0 RP
53. RM Return on minus, Flag Status: S=1 RM
54. RZ Return on zero, Flag Status: Z=1 RZ
55. RNZ Return on no zero, Flag Status: Z=0 RNZ
56. RPE Return on parity even, Flag Status: P=1 RPE
57. RPO Return on parity odd, Flag Status: P=0 RPO

58. PCHL The contents of registers H and L are copied into the
program counter. The contents of H are placed as the
high-order byte and the contents of L as the low-
order byte.

PCHL

59. RST 0-7 The RST instruction is equivalent to a 1-byte call
instruction to one of eight memory locations
depending upon the number. The instructions are
generally used in conjunction with interrupts and
inserted using external hardware. However
these can be used as software instructions in a
program to transfer program execution to one of the
eight locations. The addresses are:
Instruction Restart Address
RST 0 0000H
RST 1 0008H
RST 2 0010H
RST 3 0018H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

RST 3

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

7

Sr. Instruction Description Example

The 8085 has four additional interrupts and these interrupts generate RST instructions internally and
thus do not require any external hardware.
60. TRAP It restart from address 0024H TRAP
61. RST 5.5 It restart from address 002CH RST 5.5
62. RST 6.5 It restart from address 0034H RST 6.5
63. RST 7.5 It restart from address 003CH RST 7.5
LOGICAL INSTRUCTIONS
64. CMP R

CMP M
The contents of the operand (register or memory) are
compared with the contents of the accumulator. Both
contents are preserved. The result of the comparison
is shown by setting the flags of the PSW as follows:
if (A) < (reg/mem): carry flag is set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset

CMP B
CMP M

65. CPI 8-bit data The second byte (8-bit data) is compared with the
contents of the accumulator. The values being
compared remain unchanged. The result of the
comparison is shown by setting the flags of the PSW
as follows:
if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) > data: carry and zero flags are reset

CPI 89H

66. ANA R
ANA M

The contents of the accumulator are logically ANDed
with the contents of the operand (register or
memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY is
reset. AC is set.

ANA B
ANA M

67. ANI 8-bit data The contents of the accumulator are logically ANDed
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY is reset. AC is set.

ANI 86H

68. XRA R
XRA M

The contents of the accumulator are Exclusive ORed
with the contents of the operand (register or
memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY and
AC are reset.

XRA B
XRA M

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

8

Sr. Instruction Description Example

69. XRI 8-bit data The contents of the accumulator are Exclusive ORed
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY and AC are reset.

XRI 86H

70. ORA R
ORA M

The contents of the accumulator are logically ORed
with the contents of the operand (register or
memory), and the result is placed in the accumulator.
If the operand is a memory location, its address is
specified by the contents of HL registers. S, Z, P are
modified to reflect the result of the operation. CY and
AC are reset.

ORA B
ORA M

71. ORI 8-bit data The contents of the accumulator are logically ORed
with the 8-bit data (operand) and the result is placed
in the accumulator. S, Z, P are modified to reflect the
result of the operation. CY and AC are reset.

ORI 86H

72. RLC Each binary bit of the accumulator is rotated left by
one position. Bit D7 is placed in the position of D0 as
well as in the Carry flag. CY is modified according to
bit D7. S, Z, P, AC are not affected.

RLC

73. RRC Each binary bit of the accumulator is rotated right by
one position. Bit D0 is placed in the position of D7 as
well as in the Carry flag. CY is modified according to
bit D0. S, Z, P, AC are not affected.

RRC

74. RAL Each binary bit of the accumulator is rotated left by
one position through the Carry flag. Bit D7 is placed
in the Carry flag, and the Carry flag is placed in the
least significant position D0. CY is modified according
to bit D7. S, Z, P, AC are not affected.

RAL

75. RAR Each binary bit of the accumulator is rotated right by
one position through the Carry flag. Bit D0 is placed
in the Carry flag, and the Carry flag is placed in the
most significant position D7. CY is modified according
to bit D0. S, Z, P, AC are not affected.

RAR

76. CMA The contents of the accumulator are complemented.
No flags are affected.

CMA

77. CMC The Carry flag is complemented. No other flags are
affected.

CMC

78. STC The Carry flag is set to 1. No other flags are affected. STC
CONTROL INSTRUCTIONS
79. NOP No operation is performed. The instruction is fetched

and decoded. However no operation is executed.
NOP

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9

Sr. Instruction Description Example

80. HLT The CPU finishes executing the current instruction
and halts any further execution. An interrupt or reset
is necessary to exit from the halt state.

HLT

81. DI The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled. No flags are
affected.

DI

82. EI The interrupt enable flip-flop is set and all interrupts
are enabled. No flags are affected. After a system
reset or the acknowledgement of an interrupt, the
interrupt enable flip-flop is reset, thus disabling the
interrupts. This instruction is necessary to re enable
the interrupts (except TRAP).

EI

83. RIM This is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit. The instruction loads eight bits in the
accumulator with the following interpretations.

RIM

84. SIM This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output. The instruction interprets the
accumulator contents as follows.

SIM

SID I7 I6 I5 IE 7.5 6.5 5.5

D7 D
6

D
4

D
3

D
2 D

1
D

0

Serial Input
Data bit Interrupts

pending if

InteSeri
al
Output

Interrupt
masked
if bit=1

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

10

2. Explain Addressing mode in 8085

1) Immediate Addressing Mode
 In this mode 8/16 bit data is specified in instruction itself as one of its operand.
 Example

MVI B 20H ; 20H is copied into register B.
LXI D 1000H ; 1000H is stored into DE register pair.

2) Direct Addressing Mode
 In this mode 8/16 bit address is directly specified in instruction itself as one of its operand.
 Example

LDA 2000H ; 2000H is memory address.
IN 08H ; 08H is port address.
OUT 10H ; 10H is port address.

3) Register Addressing Mode
 In this mode specifies register or register pair that contains data.
 Example

MOV A B ; A B.
ADD B ; A=A+B.

4) Indirect Addressing Mode
 In this mode 16 bit memory address is indirectly provided with the instruction using a register pair.
 Example

LDAX D ; AM[DE].
STAX D ; M[DE] A.

5) Implicit Addressing Mode
 This mode doesn’t require any operand, data is specified by the Opcode itself.
 Example

CMA

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1

1. Write an ALP to load register B with data 14H, register C with FFH, register D
with 29H and register E with 67H.
MVI B, 14H

MVI C, FFH

MVI D, 29H

MVI E, 67H

HLT

2. Write an ALP to transfer data from register B to C.
MVI B, 55H

MOV C, B

HLT

3. Write an ALP to store data of register B into memory location 2050H.
MVI B, 67H

MOV A, B

STA 2050H ; Store data of Accumulator at memory location 2050H

HLT

4. write an ALP which directly store data 56H into memory location 2050H.
LXI H, 2050H

MVI M, 56H

HLT

5. Write an 8085 assembly language program for exchanging two 8-bit numbers
stored in memory locations 2050h and 2051h.
LDA 2050H

MOV B, A

LDA 2051H

STA 2050H

MOV A, B

STA 2051H

HLT

6. Write an ALP to interchange 16-bit data stored in register BC and DE.

WITHOUT XCHG INSTRUCTION
MOV H, B

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

2

MOV L, C

MOV B, D

MOV C, E

MOV D, H

MOV E, L

HLT

WITH XCHG INSTRUCTION
MOV H, B

MOV L, C

XCHG ; The contents of register H are exchanged with the contents of register D, and the

; contents of register L are exchanged with the contents of register E.

MOV B, H

MOV C, L

HLT

7. Write the set of 8085 assembly language instructions to store the contents of B
and C registers on the stack.
MVI B, 50H

MVI C, 60H

PUSH B

PUSH C

HLT

8. Write an ALP to delete (Make 00H) the data byte stored at memory location
from address stores in register DE.
MVI A, 00H

STAX D

HLT

9. Write an 8085 assembly language program to add two 8-bit numbers stored in
memory locations 2050h and 2051h. Store result in location 2052h.
LXI H 2050H

MOV A M

INX H

ADD M

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

3

INX H

MOV M A

HLT

10. Subtract 8 bit data stored at memory location 2050H from data stored at
memory location 2051H and store result at 2052H.
LXI H 2050H

MOV A M

INX H

SUB M ; A = A - M

INX H

MOV M A

HLT

11. Write an 8085 assembly language program to add two 16-bit numbers
stored in memory.
LHLD 2050H

XCHG ; The contents of register H are exchanged with the contents of register D, and the

; contents of register L are exchanged with the contents of register E.

LHLD 2052H

MOV A E

ADD L

MOV L A

MOV A D

ADC H

MOV H A

SHLD 2054H ; Store Value of L Register at 2054 and value of H register at 2055.

HLT

12. Write an 8085 assembly language program to find the number of 1’s binary
representation of given 8-bit number.
MVI B 00H

MVI C 08H

MOV A D

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

4

BACK: RAR ; Rotate Accumulator Right through carry flag.

JNC SKIP

INR B

SKIP: DCR C ; Increment of B will skip.

JNZ BACK

HLT

13. Implement the Boolean equation D= (B+C) ∙ E, where B, C, D and E
represents data in various registers of 8085.
MOV A B

ORA C

ANA E

MOV D A

HLT

14. Write an 8085 assembly language program to add two decimal numbers
using DAA instruction.
LXI H 2050H

MOV A M

INX H

MOV B M

MVI C 00H

ADD B

DAA ; Decimal adjustment of accumulator.

JNC SKIP

INR C

SKIP: INX H ; Increment of C will skip.

MOV M A

INX H

MOV M C

HLT

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

5

15. Write an 8085 assembly language program to find the minimum from two
8-bit numbers.
LDA 2050H

MOV B A

LDA 2051H

CMP B

JNC SMALL

STA 2052H

HLT

SMALL: MOV A B

STA 2052H

HLT

16. Write an 8085 program to copy block of five numbers starting from
location 2001h to locations starting from 3001h.
LXI D 3100H

MVI C 05H

LXI H 2100

LOOP: MOV A M

STAX D

INX D

INX H

DCR C

JNZ LOOP

HLT

17. An array of ten data bytes is stored on memory locations 2100H onwards.
Write an 8085 assembly language program to find the largest number and
store it on memory location 2200H.
LXI H 2100H

MVI C 0AH

MOV A M

DCR C

LOOP: INX H

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

6

CMP M ; Compare Data of accumulator with the data of memory location specified by HL pair and

; set flags accordingly.

JNC AHED

MOV A M

AHED: DCR C

JNZ LOOP

STA 2200H

HLT

18. Write an 8085 assembly language program to add block of 8-bit numbers.
LXI H 2000H

LXI B 3000H

LXI D 4000H

BACK: LDAX B

ADD M

STAX D

INX H

INX B

INX D

MOV A L

CPI 0A

JNZ BACK

HLT

19. Write an 8085 assembly language program to count the length of string
ended with 0dh starting from location 2050h (Store length in register B).
LXI H 2050H

MVI B 00H

BACK: MOV A M

INR B

INX H

CPI 0DH

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

7

JNZ BACK

DCR B

HLT

20. An array of ten numbers is stored from memory location 2000H onwards.
Write an 8085 assembly language program to separate out and store the EVEN
and ODD numbers on new arrays from 2100H and 2200H, respectively.
LXI H 2000H

LXI D 2100H

LXI B 2200H

MVI A 0AH

COUNTER: STA 3000H

MOV A M

ANI 01H

JNZ CARRY

MOV A M

STAX B

INX B

JMP JUMP

CARRY: MOV A M ; This block will store Odd numbers.

STAX D

INX D

JUMP: LDA 3000H

DCR A

INX H

JNZ COUNTER

HLT

21. An array of ten data bytes is stored on memory locations 2100H onwards.
Write an 8085 assembly language program to find the bytes having
complemented nibbles (e.g. 2DH, 3CH, 78H etc.) and store them on a new array
starting from memory locations 2200H onwards.
LXI H 2100H

LXI D 2200H

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

8 Prof. Vijay M. Shekhat, CE Department | 2150707 – Microprocessor and Interfacing

MVI C 0AH

LOOP: MOV A M

ANI 0FH

MOV B A

MOV A M

ANI F0H

RRC

RRC

RRC

RRC

CPM B

JNZ NEXT

MOV A M

STAX D

INX D

NEXT: INX H

DCR C

JNZ LOOP

HLT

22. Write an 8085 assembly language program to count the positive numbers,
negative numbers, zeros, and to find the maximum number from an array of
twenty bytes stored on memory locations 2000H onwards. Store these three
counts and the maximum number on memory locations 3001H to 3004H,
respectively.
LXI H 2000

MVI C 14

MVI D 00

MVI B 00

MVI E 00

LOOP: MOV A M

CMP B

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9

JC NEG

JNZ POS

INX H

DCR C

JNZ LOOP

JMP STORE

NEG: INR D ; Count Negative number

INX H

DCR C

JNZ LOOP

JMP STORE

POS: INR E ; Count Positive number

INX H

DCR C

JNZ LOOP

JMP STORE

STORE: MOV A E

STA 3001

MOV A D

STA 3002

LXI H 2000

MVI C 14

MVI D 00

MVI B 00

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

10

MVI E 00

LOOP1: MOV A M ; Main Program for count Zero And Find Maximum.

CMP B

JZ ZERO

JNC MAX

INX H

DCR C

JNZ LOOP1

JMP STORE1

ZERO: INR D ; For count Zero

INX H

DCR C

JNZ LOOP1

JMP STORE1

MAX: CMP E ; Find Maximum.

JC SKIP

MOV E A

SKIP: INX H

DCR C

JNZ LOOP1

JMP STORE1

STORE1: MOV A D ; Store Number of zeros

STA 3003

MOV A E

STA 3004 ; Store maximum.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

11

HLT

23. Write an 8085 assembly language program to separate out the numbers
between 2010 and 4010 from an array of ten numbers stored on memory
locations 2000H onwards. Store the separated numbers on a new array from
3000H onwards.
LXI H 2000

LXI D 3000

MVI C 0A

LOOP: MOV A M

CPI 14

JZ NEXT

JC NEXT

CPI 28

JNC NEXT

STAX D

INX D

NEXT: INX H ; Skip Storing of Number.

DCR C

JNZ LOOP

HLT

24. Write an 8085 assembly language program sort an array of twenty bytes
stored on memory locations 2000H onwards in descending order.
MVI B 14

L2: LXI H 2000

MVI C 13

L1: MOV A M

INX H

CMP M

JC SWAP

bACK: DCR C

JNZ L1

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

12

DCR B

JNZ L2

HLT

SWAP: MOV D M; This block swap values.

MOV M A

DCX H

MOV M D

INX H

JMP BACK

25. An array of twenty data bytes is stored on memory locations 4100H
onwards. Write an 8085 assembly language program to remove the duplicate
entries from the array and store the compressed array on a new array starting
from memory locations 4200H onwards.
MVI B 14H

MVI C 01H

LXI H 4101H

SHLD 3000H

LDA 4100H

STA 4200H

; This program fetch one by one value from original array and sore it on new array if it is not duplicate.

L1: LHLD 3000H

MOV A M

INX H

DCR B

JZ OVER

SHLD 3000H

LXI H 4200H

MOV D C

L2: CMP M

JZ L1

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

13

INX H

DCR D

JNZ L2

MOV M A

INR C

JMP L1

OVER: HLT

26. Write an ALP to Pack the two unpacked BCD numbers stored in memory
locations 2200H and 2201H and store result in memory location 2300H.
Assume the least significant digit is stored at 2200H.
LDA 2201

RLC ; Rotate accumulator left 4 times without carry.

RLC

RLC

RLC

ANI F0

MOV C A

LDA 2200

ADD C

STA 2300

HLT

27. Write a set of 8085 assembly language instructions to unpack the upper
nibble of a BCD number.
MVI A 98

MOV B A

ANI F0

RRC ; Rotate accumulator left 4 times without carry.

RRC

RRC

RRC

STA 2000

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

14

HLT

28. Write Assembly language program to subtract 2 16-bit BCD numbers.
LXI H 3040

LXI D 1020

MOV A L

SUB E

DAA

STA 2000

MOV A H

SBB D

DAA

STA 2001

HLT

29. Write an 8085 assembly language program to continuously read an input
port with address 50H. Also write an ISR to send the same data to output port
with address A0H when 8085 receives an interrupt request on its RST 5.5 pin.
LOOP: IN 50

EI

CALL DELAY

JMP LOOP

HLT

DELAY: NOP

NOP

NOP

NOP

RET

; This code must be write at memory location 002C onwards.

OUT A0

JMP LOOP

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

15

30. Write an ALP to generate a square wave of 2.5 kHz frequency. Use D0 bit of
output port ACH to output the square wave.
MVI A 01H

REPEAT: OUT AC

MVI C Count

AGAIN: DCR C

JNZ AGAIN

CMA

JMP REPEAT

Calculation:

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑤𝑎𝑣𝑒 =
1

2.5 ∗ 103
= 0.4 ∗ 10−3𝑠.

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑤𝑎𝑣𝑒 =
0.4 ∗ 10−3𝑠

2
. = 0.2 ∗ 10−3𝑠.

𝑙𝑒𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 0.3 ∗ 10−6𝑠.

𝐷𝑒𝑙𝑎𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑒𝑤𝑒𝑒𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑤𝑎𝑣𝑒 =
0.2 ∗ 10−3

0.3 ∗ 10−6
≈ 666𝑇𝑠𝑡𝑎𝑡𝑒𝑠

Now

666 = 7 + (14 ∗ 𝐶𝑜𝑢𝑛𝑡) − 3 + 4

658 = 14 ∗ 𝐶𝑜𝑢𝑛𝑡

𝐶𝑜𝑢𝑛𝑡 = 47

𝐶𝑜𝑢𝑛𝑡 = 2𝐹𝐻

Final Program:

MVI A 01H

REPEAT: OUT AC

MVI C 2F

AGAIN: DCR C

JNZ AGAIN

CMA

JMP REPEAT

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

16 Prof. Vijay M. Shekhat, CE Department | 2150707 – Microprocessor and Interfacing

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

1

1. Stack

 Stack is a group of memory location in the R/W memory that is used for temporary storage of binary

information during execution of a program.

 The starting memory location of the stack is defined in program and space is reserved usually at the high

end of memory map.

 The beginning of the stack is defined in the program by using instruction LXI SP, 16-bit memory address.

Which loads a 16-bit memory address in stack pointer register of microprocessor.

 Once stack location is defined storing of data bytes begins at the memory address that is one less then

address in stack pointer register. LXI SP, 2099h the storing of data bytes begins at 2098H and continues

in reversed numerical order.

Fig. Stack

 Data bytes in register pair of microprocessor can be stored on the stack in reverse order by using the

PUSH instruction.

 PUSH B instruction sore data of register pair BC on sack.

Fig. PUSH operation on stack

 Data bytes can be transferred from the stack to respective registers by using instruction POP.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

2

Fig. POP operation on stack

Instruction necessary for stack in 8085
LXI SP, 2095 Load the stack pointer register with a 16-bit address.

PUSH B/D/H It copies contents of B-C/D-E/H-L register pair on the stack.

PUSH PSW Operand PSW represents Program status word meaning contents of accumulator and flags.

POP B/D/H It copies content of top two memory locations of the stack in to specified register pair.

POP PSW It copies content of top two memory locations of the stack in to B-C accumulator and flags
respectively.

2. Subroutine

 A subroutine is a group of instruction that performs a subtask of repeated occurrence.

 A subroutine can be used repeatedly in different locations of the program.

Advantage of using Subroutine
 Rather than repeat the same instructions several times, they can be grouped into a subroutine that is

called from the different locations.

Where to write Subroutine?
 In Assembly language, a subroutine can exist anywhere in the code.

 However, it is customary to place subroutines separately from the main program.

Instructions for dealing with subroutines in 8085.
 The CALL instruction is used to redirect program execution to the subroutine.

o When CALL instruction is fetched, the Microprocessor knows that the next two new Memory

location contains 16bit subroutine address.

o Microprocessor Reads the subroutine address from the next two memory location and stores the

higher order 8bit of the address in the W register and stores the lower order 8bit of the address in

the Z register.

o Push the Older address of the instruction immediately following the CALL onto the stack [Return

address]

o Loads the program counter (PC) with the new 16-bit address supplied with the CALL instruction from

WZ register.

 The RET instruction is used to return.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

3

 Number of PUSH and POP instruction used in the subroutine must be same, otherwise, RET instruction

will pick wrong value of the return address from the stack and program will fail.

Fig. Subroutine

 Example: write ALP to add two numbers using call and subroutine.

LXI H 2000 ; Load memory address of operand

MOV B M ; Store first operand in register B

INX H ;Increment H-L pair

MOV A M ; Store second operand in register A

CALL ADDITION ; Call subroutine ADDITION

STA 3000 ; Store answer

HLT

ADDITION: ADD B ; Add A and B

RET ; Return

Conditional call and return instruction available in 8085

CC 16-bit address Call on Carry, Flag Status: CY=1

CNC 16-bit address Call on no Carry, Flag Status: CY=0

CP 16-bit address Call on positive, Flag Status: S=0

CM 16-bit address Call on minus, Flag Status: S=1

CZ 16-bit address Call on zero, Flag Status: Z=1

CNZ 16-bit address Call on no zero, Flag Status: Z=0

CPE 16-bit address Call on parity even, Flag Status: P=1

CPO 16-bit address Call on parity odd, Flag Status: P=0

RC Return on Carry, Flag Status: CY=1

RNC Return on no Carry, Flag Status: CY=0

RP Return on positive, Flag Status: S=0

RM Return on minus, Flag Status: S=1

RZ Return on zero, Flag Status: Z=1

RNZ Return on no zero, Flag Status: Z=0

RPE Return on parity even, Flag Status: P=1

RPO Return on parity odd, Flag Status: P=0

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

4

3. Applications of Counters and Time Delays

1. Traffic Signal

2. Digital Clocks

3. Process Control

4. Serial data transfer

4. Counters

 A counter is designed simply by loading appropriate number into one of the registers and using INR or

DNR instructions.

 Loop is established to update the count.

 Each count is checked to determine whether it has reached final number; if not, the loop is repeated.

Fig. Counter

5. Time Delay

 Each instruction passes through different combinations of Fetch, Memory Read, and Memory Write

cycles.

 Knowing the combinations of cycles, one can calculate how long such an instruction would require to

complete.

 It is counted in terms of number of T–states required.

 Calculating this time we generate require software delay.

Time Delay Using Single Register
Label Opcode Operand Comment T-states

MVI C,05h ; Load Counter 7

LOOP: DCR C ; Decrement Counter 4

 JNZ LOOP ; Jump back to Decr. C 10/7

MVI C 05
Mchine Cycle: F + R = 2
T-States: 4T + 3T = 7T

DCR C
Mchine Cycle: F = 1
T-States: 4T = 4T

JNZ LOOP (true)
Mchine Cycle: F + R + R = 3
T-States: 4T + 3T + 3T = 10T

JNZ LOOP (false)
Mchine Cycle: F + R = 3
T-States: 4T + 3T = 7T

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

5

 Instruction MVI C, 05h requires 7 T-States to execute. Assuming, 8085 Microprocessor with 2MHz clock

frequency. How much time it will take to execute above instruction?

Clock frequency of the system (f) = 2 MHz

Clock period (T) = 1/f = ½ * 10-6 = 0.5 µs

Time to execute MVI = 7 T-states * 0.5 µs

 = 3.5 μs

 Now to calculate time delay in loop, we must account for the T-states required for each instruction, and

for the number of times instructions are executed in the loop. There for the next two instructions:

 DCR: 4 T-States

 JNZ: 10 T-States

 14 T-States

 Here, the loop is repeated for 5 times.

 Time delay in loop TL with 2MHz clock frequency is calculated as:

TL= T * Loop T-sates * N10 -----------------(1)

TL : Time Delay in Loop

T : Clock Frequency

N10 : Equivalent decimal number of hexadecimal count loaded in the delay register.

 Substituting value in equation (1)

TL= (0.5 * 10-6 * 14 * 5)

= 35 s

 If we want to calculate delay more accurately, we need to accurately calculate execution of JNZ

instruction i.e

If JNZ = true, then T-States = 10

Else if JNZ =false, then T-States = 7

 Delay generated by last clock cycle:

= 3T * Clock Period

= 3T * (1/2 * 10-6)

= 1.5 s

 Now, the accurate loop delay is:

TLA=TL - Delay generated by last clock cycle

TLA= 35 s - 1.5 s

TLA= 33.5 s

 Now, to calculate total time delay

Total Delay = Time taken to execute instruction outside loop + Time taken to execute loop instructions

TD = TO + TLA

= (7 * 0.5 s) + 33.5 s

= 3.5 s + 33.5 s

= 37 s

 In most of the case we are given time delay and need to find value of the counter register which decide

number of times loop execute.

 For example: write ALP to generate 37 µs delay given that clock frequency if 2 MHz.

 Single register loop can generate small delay only for large delay we use other technique.

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

6

Time Delay Using a Register Pair
 Time delay can be considerably increased by setting a loop and using a register pair with a 16-bit number

(FFFF h).

 A 16-bit is decremented by using DCX instruction.

 Problem with DCX instruction is DCX instruction doesn’t set Zero flag.

 Without test flag, Jump instruction can’t check desired conditions.

 Additional technique must be used to set Zero flag.

Label Opcode Operand Comment T-states

LXI B,2384 h ; Load BC with 16-bit counter 10

LOOP: DCX B ; Decrement BC by 1 6

MOV A, C ; Place contents of C in A 4

ORA B ; OR B with C to set Zero flag 4

JNZ LOOP ; if result not equal to 0, 10/7 jump back to loop 10/7

 Here the loop includes four instruction:

Total T-States = 6T + 4T + 4T + 10T

 = 24 T-states

 The loop is repeated for 2384 h times.

 Converting (2384)16 into decimal.

2384 h = (2 * 163)+ (3* 162) + (8 * 161) + (4 * 160)

= 8192 + 768 + 128 + 4 = 9092

 Clock frequency of the system (f)= 2 MHz

 Clock period (T) = 1/f = ½ * 10-6 = 0.5 s

 Now, to find delay in the loop

TL= T * Loop T-sates * N10

= 0.5 * 24 * 9092

= 109104 s = 109 ms (without adjusting last cycle)

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

7

Time Delay Using a LOOP within a LOOP

Fig. Time Delay Using a LOOP within a LOOP

Label Opcode Operand T-states
 MVI B,38h 7T

LOOP2: MVI C,FFh 7T

LOOP1: DCR C 4T
 JNZ LOOP1 10/7 T
 DCR B 4T
 JNZ LOOP2 10/7 T

 Calculating delay of inner LOOP1: TL1

TL= T * Loop T-states * N10

= 0.5 * 14* 255

= 1785 μs = 1.8 ms

TL1= TL – (3T states* clock period)

= 1785 – (3 * ½ * 10-6)

= 1785-1.5=1783.5 μs

 Now, Calculating delay of outer LOOP2: TL2

 Counter B : (38)16 = (56)10 So loop2 is executed for 56 times.

T-States = 7 + 4 + 10 = 21 T-States

TL2 = 56 (TL1 + 21 T-States * 0.5)

= 56(1783.5 μs + 10.5)

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

8

= 100464 μs

TL2 = 100.46 ms

Disadvantage of using software delay
 Accuracy of time delay depends on the accuracy of system clock.

 The Microprocessor is occupied simply in a waiting loop; otherwise it could be employed to perform

other functions.

 The task of calculating accurate time delays is tedious.

 In real time applications timers (integrated timer circuit) are commonly used.

 Intel 8254 is a programmable timer chip that can be interfaced with microprocessor to provide timing

accuracy.

 The disadvantage of using hardware chip include the additional expense and the need for extra chip in

the system.

6. Counter design with time delay

Fig. 6. Counter design with time delay

 It is combination of counter and time delay.

 I consist delay loop within counter program.

7. Hexadecimal counter program

 Write a program to count continuously in hexadecimal from FFh to 00h with 0.5 s clock period. Use

register C to set up 1 ms delay between each count and display the number at one of the output port.

 Given:

 Counter= FF h

 Clock Period T=0.5 s

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

9

 Total Delay = 1ms

 Output:

 To find value of delay counter

 Program

MVI B,FF

LOOP:MOV A,B

OUT 01

MVI C, COUNT; need to calculate delay count

DELAY: DCR C

JNZ DELAY

DCR B

JNZ LOOP

HLT

 Calculate Delay for Internal Loop

TI = T-States * Clock Period * COUNT

= 14 * 0.5 * 10-6 * COUNT

TI = (7.0 * 10-6)* COUNT

 Calculate Delay for Outer Loop:

TO = T-States * Clock Period

= 35 * 0.5 * 10-6

 Calculate Total Time Delay:

TD = TO + TL

1 ms = 17.5 * 10-6 + (7.0 * 10-6)* COUNT

1 * 10-3 = 17.5 * 10-6 + (7.0 * 10-6)* COUNT

COUNT="1 ∗ 10−3 − 17.5 ∗ 10−6" /"7.0 ∗ 10−6"

COUNT= (140)10 = (8C)16

8. 0-9 up/down counter program

 Write an 8085 assembly language program to generate a decimal counter (which counts 0 to 9

continuously) with a one second delay in between. The counter should reset itself to zero and repeat

continuously. Assume a crystal frequency of 1MHz.

 Program

START: MVI B,00H

DISPLAY: OUT 01

LXI H, COUNT

LOOP: DCX H

MOV A, L

ORA H

JNZ LOOP

INR B

MOV A,B

CPI 0A

JNZ DISPLAY

http://www.iceni.com/unlock-pro.htm
http://www.iceni.com/unlock-pro.htm

10

JZ START

9. Code Conversion

Two Digit BCD Number to Binary Number
1. Initialize memory pointer to given address (2000).

2. Get the Most Significant Digit (MSD).

3. Multiply the MSD by ten using repeated addition.

4. Add the Least Significant Digit (LSD) to the result obtained in previous step.

5. Store the HEX data in Memory.

 Program

LXI H 2000
MOV C M
MOV A C
ANI 0F ; AND operation with 0F (00001111)
MOV E A
MOV A C
ANI F0 ; AND operation with F0 (11110000)
JZ SB1 ; If zero skip further process and directly add LSD
RRC ; Rotate 4 times right
RRC
RRC
RRC
MOV D A
MVI A 00
L1: ADI 0A ; Loop L1 multiply MSD with 10
DCR D
JNZ L1
SB1: ADD E
STA 3000 ; Store result
HLT

8-bit Binary Number to Decimal Number
1. Load the binary data in accumulator

2. Compare ‘A’ with 64 (Dicimal 100) if cy = 01, go step 5 otherwise next step

3. Subtract 64H from ‘A’ register

4. Increment counter 1 register

5. Go to step 2

6. Compare the register ‘A’ with ‘0A’ (Dicimal 10), if cy=1, go to step 10, otherwise next step

7. Subtract 0AH from ‘A’ register

8. Increment Counter 2 register

9. Go to step 6

10. Combine the units and tens to from 8 bit result

11. Save the units, tens and hundred’s in memory

12. Stop the program execution

 Program

MVI B 00

http://www.iceni.com/unlock-pro.htm

11

LDA 2000
LOOP1: CPI 64 ; Compare with 64H
JC NEXT1 : If A is less than 64H then jump on NEXT1
SUI 64 ; subtract 64H
INR B
JMP LOOP1
NEXT1: LXI H 2001
MOV M B ; Store MSD into memory
MVI B 00
LOOP2: CPI 0A ; Compare with 0AH
JC NEXT2 ; If A is less than 0AH then jump on NEXT2
SUI 0A ; subtract 0AH
INR B
JMP LOOP2
NEXT2: MOV D A
MOV A B
RLC
RLC
RLC
RLC
ADD D
STA 2002 ; Store packed number formed with two leas significant digit
HLT

Binary Number to ASCII Number
 Load the given data in A - register and move to B - register

 Mask the upper nibble of the Binary decimal number in A - register

 Call subroutine to get ASCII of lower nibble

 Store it in memory

 Move B - register to A - register and mask the lower nibble

 Rotate the upper nibble to lower nibble position

 Call subroutine to get ASCII of upper nibble

 Store it in memory

 Terminate the program.

LDA 5000 Get Binary Data

 MOV B, A

 ANI 0F ; Mask Upper Nibble

 CALL SUB1 ; Get ASCII code for upper nibble

 STA 5001

 MOV A, B

 ANI F0 ; Mask Lower Nibble

 RLC

 RLC

 RLC

 RLC

 CALL SUB1 ; Get ASCII code for lower nibble

 STA 5002

http://www.iceni.com/unlock-pro.htm

12

 HLT ; Halt the program.

SUB1: CPI 0A

 JC SKIP

 ADI 07

SKIP: ADI 30

 RET ; Return Subroutine

ASCII Character to Hexadecimal Number
1. Load the given data in A - register

2. Subtract 30H from A - register

3. Compare the content of A - register with 0AH

4. If A < 0AH, jump to step6. Else proceed to next step

5. Subtract 07H from A - register

6. Store the result

7. Terminate the program

 Program

LDA 2000
CALL ASCTOHEX
STA 2001
HLT

ASCTOHEX: SUI 30 ; This block Convert ASCII to Hexadecimal.
CPI 0A
RC
SUI 07
RET

10. BCD Arithmetic

Add 2 8-bit BCD Numbers
1. Load firs number into accumulator.

2. Add second number.

3. Apply decimal adjustment to accumulator.

4. Store result.

 Program

LXI H, 2000H

MOV A, M

INX H

ADD M

DAA

INX H

MOV M, A

HLT

http://www.iceni.com/unlock-pro.htm

13

Subtract the BCD number stored in E register from the number stored in the D

register
1. Find 99’s complement of data of register E

2. Add 1 to find 100’s complement of data of register E

3. Add Data of Register D

4. Apply decimal adjustment

 Program

MVI A, 99H

 SUB E : Find the 99's complement of subtrahend

INR A : Find 100's complement of subtrahend

ADD D : Add minuend to 100's complement of subtrahend

DAA : Adjust for BCD

HLT : Terminate program execution

11. 16-Bit Data operations

Add Two 16 Bit Numbers
1. Initialize register C for using it as a counter for storing carry value.

2. Load data into HL register pair from one memory address (9000H).

3. Exchange contents of register pair HL with DE.

4. Load second data into HL register pair (from 9002H).

5. Add register pair DE with HL and store the result in HL.

6. If carry is present, go to 7 else go to 8.

7. Increment register C by 1.

8. Store value present in register pair HL to 9004H.

9. Move content of register C to accumulator A.

10. Store value present in accumulator (carry) into memory (9006H).

11. Terminate the program.

 Program

MVI C, 00H

LHLD 9000H

XCHG ; Exchange contents of register pair HL with DE

LHLD 9002H

DAD D ; Add register pair DE with HL and store the result in HL

JNC AHEAD ; If carry is present, go to AHEAD

INR C

AHEAD: SHLD 9004H ; Store value present in register pair HL to 9004H

MOV A, C

STA 9006H ; Store value present in accumulator (carry) into memory (9006H)

HLT

Subtract Two 16 Bit Numbers
1. Load first data from Memory (9000H) directly into register pair HL.

2. Exchange contents of register pair DE and HL.

3. Load second data from memory location (9002H) directly into register pair HL.

http://www.iceni.com/unlock-pro.htm

14

4. Move contents of register E into accumulator A.

5. Subtract content of register L from A.

6. Move contents of accumulator A into register L.

7. Move contents of register D into accumulator A.

8. Subtract with borrow contents of register H from accumulator A.

9. Move contents of accumulator A into register H.

10. Store data contained in HL register pair into memory (9004H).

11. Terminate the program.

 Program

LHLD 9000H ; Load first data from Memory (9000H) directly into register pair HL

XCHG ; Exchange contents of register pair DE and HL.

LHLD 9002H ; Load second data from memory location (9002H) directly into register pair HL

MOV A, E

SUB L

MOV L, A

MOV A, D

SBB H ; Subtract with borrow contents of register H from accumulator A

MOV H, A

SHLD 9004H ; Store data contained in HL register pair into memory (9004H)

HLT

http://www.iceni.com/unlock-pro.htm

1

1. Draw and explain the block diagram of the programmable peripheral
interface (8255A).

Ans.

Figure: 8255A Architecture
Read Write Control Logic

RD (READ) This is an active low signal that enables Read operation. When signal is
low MPU reads data from selected I/O port of 8255A

WR (WRITE) This is an active low signal that enables Write operation. When signal
is low MPU writes data into selected I/O port or control register

RESET This is an active high signal, used to reset the device. That means clear
control registers

CS This is Active Low signal.
When it is low, then data is transfer from 8085
CS signal is the master Chip Select.
A0 and A1 specify one of the I/O ports or control register

http://www.iceni.com/unlock-pro.htm

2

Data Bus Buffer
 This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system

data bus.
 Data is transmitted or received by the buffer upon execution of input or output

instructions by the CPU.
 Control words and status information are also transferred through the data bus buffer.

Group A and Group B Controls
 The functional configuration of each port is programmed by the systems software. In

essence, the CPU "outputs" a control word to the 8255.
 The control word contains information such as "mode", "bit set", "bit reset", etc., that

initializes the functional configuration of the 8255.
 Each of the Control blocks (Group A and Group B) accepts "commands" from the

Read/Write Control logic, receives "control words" from the internal data bus and
issues the proper commands to its associated ports.

Ports A, B, and C
 The 8255 contains three 8-bit ports (A, B, and C).
 All can be configured to a wide variety of functional characteristics by the system

software but each has its own special features or "personality" to further enhance the
power and flexibility of the 8255.

 Port A One 8-bit data output latch/buffer and one 8-bit data input latch.
 Both "pull-up" and "pull-down" bus-hold devices are present on Port A.
 Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.
 Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for

input). This port can be divided into two 4-bit ports under the mode control.
 Each 4-bit port contains a 4-bit latch and it can be used for the control signal output

and status signal inputs in conjunction with ports A and B.

http://www.iceni.com/unlock-pro.htm

3

2. Explain 8255A I/O Operating Modes
Ans. 8255A has three different I/O operating modes:

1. Mode 0
2. Mode 1
3. Mode 2

Mode 0

 Simple I/O for port A,B and C
 In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports.
 Each port can be programmed in either input mode or output mode where outputs

are latched and inputs are not latched.
 Ports do not have handshake or interrupt capability.

Mode 1: Input or Output with Handshake

 Handshake signal are exchanged between MPU and peripheral prior to data transfer.
 In this mode, Port A and B is used as 8-bit I/O ports.
 Mode 1 is a handshake Mode whereby ports A and/or B use bits from port C as

handshake signals.
 In the handshake mode, two types of I/O data transfer can be implemented: status

check and interrupt.
 Port A uses upper 3 signals of Port C: PC3, PC4, PC5
 Port B uses lower 3 signals of Port C : PC0, PC1, PC2
 PC6 and PC7 are general purpose I/O pins

Figure: Mode1 Input Handshake
STB (Strobe Input):
 This active low signal is generated by a peripheral device to indicate that, it has

transmitted a byte of data. The 8255A, in response to STB, generates IBF and INTR.

http://www.iceni.com/unlock-pro.htm

4

IBF (Input Buffer Full)
This signal is acknowledged by 8255A to indicate that the input latch has received the
data byte. It will get reset when the MPU reads the data.

INTR(Interrupt Request)
This is an output signal that may be used to interrupt the MPU. This signal is generated
if STB, IBF and INTE (internal flip-flop) are all at logic 1. It will get reset by the falling
edge of RD

INTE(Interrupt Enable)
 This signal is an internal flip-flop, used to enable or disable the generation of INTR

signal.
 The interrupt enable signal is neither an input nor an output; it is an internal bit

programmed via the PC4 (port A) or PC2 (port B) bits.

Mode 2
 In this mode, Port A can be configured as the bidirectional port and Port B either in

Mode 0 or Mode 1.
 Port A uses five signals from Port C as handshake signals for data transfer.
 The remaining three signals from Port C can be used either as simple I/O or as

handshake for port B.

3. Explain BSR Mode of the programmable peripheral interface (8255A)
with necessary diagrams.

Ans. These are two basic modes of operation of 8255.
I/O mode and Bit Set-Reset mode (BSR).

 In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode only
port C (PC0-PC7) can be used to set or reset its individual port bits.

 Under the I/O mode of operation, further there are three modes of operation of 8255,
so as to support different types of applications, mode 0, mode 1 and mode 2.

8255A: BSR(Bit Set/Reset) Mode
 In this mode any of the 8-bits of port C can be set or reset depending on D0 of the

control word.
 The bit to be set or reset is selected by bit select flags D3, D2 and D1 of the CWR (Control

Word Register).
 BSR Control Word affects one bit at a time
 It does not affect the I/O mode

http://www.iceni.com/unlock-pro.htm

5

Figure: BSR Mode Control Word

4. Explain 8255A Control Word and Control Register with necessary
diagram.

Ans. Control Register

Figure: Control Register 8255A

Control Word: Content of Control register is known as Control Word.
 Control word specify an I/O function for each port this register can be.

http://www.iceni.com/unlock-pro.htm

6

Figure:8255A Control Word

 Accessed to write a control word when A0 and A1 are at logic1, the register is not
accessible for a read operation.

 Bit D7 of the control register either specifies the I/O function or the bit Set/Reset
function, as classified in figure 1.

 If bit D7=0, bits D6-D0 determine I/O function in various mode, as shown in figure 4.
 If bit D7=0 port C operates in the bit Set/Reset (BSR) mode.
 The BSR control word does not affect the function of port A and B.

5. What is the need of the programmable interrupt controller (8259A)?
Draw and explain the block diagram of 8259A.

Ans. The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for use with the
8085 and 8086 microprocessors.

 The 8259 can be used for applications that use more than five numbers of interrupts
from multiple sources.

The main features of 8259 are listed below
 Manage eight levels of interrupts.
 Eight interrupts are spaced at the interval of four or eight locations.
 Resolve eight levels of priority in fully nested mode, automatic rotation mode or

specific rotation mode.
 Mask each interrupt individually.
 Read the status of pending interrupt, in-service interrupt, and masked interrupt.
 Accept either the level triggered or edge triggered interrupt

http://www.iceni.com/unlock-pro.htm

7

8259 Internal Block Diagram

Read/Write Logic
 It is typical R/W logic.
 When address line A0 is at logic 0, the controller is selected to write a command word

or read status.
 The Chip Select logic and A0 determine the port address of controller.

Control Logic
 It has two pins: INT as output and INTA as input.
 The INT is connected to INTR pin of MPU

Interrupt Registers and Priority Resolver
1. Interrupt Request Register (IRR)
2. Interrupt In-Service Register (ISR)
3. Priority Resolver
4. Interrupt Mask Register (IMR)

Interrupt Request Register (IRR) and Interrupt In-Service Register (ISR)
 Interrupt input lines are handled by two registers in cascade – IRR and ISR
 IRR is used to store all interrupt which are requesting service.
 ISR is used to store all interrupts which are being serviced.

http://www.iceni.com/unlock-pro.htm

8

Priority Resolver
 This logic block determines the priorities of the bit set in IRR.
 IR0 is having highest priority, IR7 is having lowest priority

Interrupt Mask Register
 It stores bits which mask the interrupt lines to be masked
 IMR operates on the IRR.
 Masking of high priority input will not affect the interrupt request lines.

Cascade Buffer / Comparator
This block is used to expand the number of interrupt levels by cascading two or more
8259As.

6. State the difference between the vectored and non-vectored
interrupts. Explain vectored interrupts of the 8085 microprocessor.

Ans. Difference between the vectored and non-vectored interrupts
VECTORED INTERRUPT

 In vectored interrupts, the processor automatically branches to the specific address
in response to an interrupt.

 In vectored interrupts, the manufacturer fixes the address of the ISR to which the
program control is to be transferred.

 The TRAP, RST 7.5, RST 6.5 and RST 5.5 are vectored interrupts.
 TRAP is the only non-maskable interrupt in the 8085.

NON-VECTORED INTERRUPT
 In non-vectored interrupts the interrupted device should give the address of the

interrupt service routine (ISR).
 The INTR is a non-vectored interrupt.
 Hence when a device interrupts through INTR, it has to supply the address of ISR

after receiving interrupt acknowledge signal.

Interrupt Maskable Vectored

INTR Yes No

RST 5.5 Yes Yes

RST 6.5 Yes Yes

RST 7.5 Yes Yes

TRAP No Yes

http://www.iceni.com/unlock-pro.htm

9

Explain vectored interrupts of the 8085 microprocessor
The vector addresses of 8085 interrupts are given below:

Software Interrupt Hardware Interrupt
RST 0 0000H RST 7.5 003CH
RST 1 0008H RST 6.5 0034H
RST 2 0010H RST 5.5 002CH
RST 3 0018H TRAP 0024H
RST 4 0020H
RST 5 0028H
RST 6 0030H
RST 7 0038H

Software Interrupt
 The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6

and RST 7.
 The software interrupts cannot be masked and they cannot be disabled.

Hardware Interrupt
 The vectored hardware interrupts of 8085 are TRAP, RST 7.5, RST 6.5, RST 5.5.
 An external device, initiates the hardware interrupts of 8O85 by placing an appropriate

signal at the interrupt pin of the processor.
 The processor keeps on checking the interrupt pins at the second T -state of last

machine cycle of every instruction.
 If the processor finds a valid interrupt signal and if the interrupt is unmasked and

enabled, then the processor accepts the interrupt.
 The acceptance of the interrupt is acknowledged by sending an INTA signal to the

interrupted device.
 The processor saves the content of PC (program Counter) in stack and then loads the

vector address of the interrupt in PC. (If the interrupt is non-vectored, then the
interrupting device has to supply the address of ISR when it receives INTA signal).

 It starts executing ISR in this address.
 At the end of ISR, a return instruction, RET will be placed.
 When the processor executes the RET instruction, it POP the content of top of stack

to PC.
 Thus the processor control returns to main program after servicing interrupt.

http://www.iceni.com/unlock-pro.htm

10

7. Explain Interfacing Seven-Segment LEDs as an Output
Ans. Interface the 8085 Microprocessor System with seven segment display through its

programmable I/O port 8255.
 Seven segment displays is often used in the digital electronic equipment to display

information regarding certain process.
 I/O devices (or peripherals) such as LEDs and keyboards are essential components of

the microprocessor-based or microcontroller-based systems.
 Seven-segment LEDs Often used to display BCD numbers (1 through 9) and a few

alphabets.
 A group of eight LEDs physically mounted in the shape of the number eight plus a

decimal point.
 Each LED is called a segment and labeled as ‘a’ through ‘g’.

Figure: Seven Segment LED

 Commonly used output peripherals in embedded systems are
LEDs, seven-segment LEDs, and LCDs; the simplest is LED

Two ways of connecting LEDs to I/O ports:
1. LED cathodes are grounded and logic 1 from the I/O port turns on the LEDs - The

current is supplied by the I/O port called current sourcing.
2. LED anodes are connected to the power supply and logic 0 from the I/O port turns on

the LEDs - The current is received by the chip called current sinking.

http://www.iceni.com/unlock-pro.htm

11

 In a common anode seven-segment LED All anodes are connected together to a
power supply and cathodes are connected to data lines

 Logic 0 turns on a segment.
Example:

To display digit 1, so all segments except b and c should be off.

Byte 11111001 = F9H will display digit 1.

http://www.iceni.com/unlock-pro.htm

12

8. Explain I/O interfacing Methods
Ans. There are two method of interfacing memory or I/O devices with the microprocessor are as

follows:
1) I/O mapped I/O
2) Memory mapped I/O

1) I/O MAPPED I/O
 In this technique, I/O device is treated as an I/O device and memory as memory. Each

I/O device uses eight address lines.
 If eight address lines are used to interface to generate the address of the I/O port,

then 256 Input/output devices can be interfaced with the microprocessor.
 The 8085 microprocessor has 16 bit address bus, so we can either use lower order

address lines (A0 – A7) or higher order address lines(A8 – A15) to address I/O devices.
We used lower order address bus & address available on A0 – A7 will be copied on the
address lines A8 – A15.

 In I/O mapped I/O, the complete 64 Kbytes of memory can be used to address memory
locations separately as the address space is not shared with I/O devices.

 In this interface type, the data transfer is possible between accumulator (A) and I/O
devices only. Arithmetic and logical operation are not possible directly.

 As 8 bit device address used, Address decoding is simple so less hardware is required.
 The separate control signals are used to access I/O devices and memory such as IOR,

IOW for I/O port and MEMR, MEMW for memory hence memory location are
protected from the I/O access.

2) MEMORY MAPPED I/O
 In this technique, I/O devices are treated as memory and memory as memory, hence

the address of the I/O devices are as same as that of memory i.e. 16 bit for 8085
microprocessor.

 So, the address space of the memory i.e. 64 Kbytes will be shared by the I/O devices
as well as by memory. All 16 address lines i.e. A0-A15 is used to address memory
locations as well as I/O devices.

 The control signals MEMR and MEMW are used to access memory devices as well as
I/O devices.

http://www.iceni.com/unlock-pro.htm

13

Comparison of Memory-Mapped I/O and Peripheral Mapped I/O
No Characteristics Memory mapped I/O I/O mapped I/O1 Device Address 16 bit 8 Bit2 Control signals forinputs MEMR & MEMW IOR & IOW3 InstructionAvailable All memory relatedinstruction : LDA; STA;LDAX; STAX; MOV M,R;ADD M; SUB M

IN and OUT instructions only
4 Data Transfer Between any register andI/O devices. Between I/O device andAccumulator only.5 Maximum Numbersof I/Os Possible Memory Map (64K) isshared between I/Os andSystem memory. I/O Mapped is independent ofmemory map; 256 Input and256 output devices can beconnected.6 Execution Speed 13 T-State (LDA, STA, ..)7 T-State (MOV M,R) 10 T-State7 HardwareRequirement More hardware is neededto decode 16 bit address Less hardware is needed todecode 8 bit address8 Other Feature Arithmetic and logicaloperations are directlyperformed with I/Odevices.

Not available

http://www.iceni.com/unlock-pro.htm

MODULE 3

INTRODUCTION TO EMBEDDED SYSTEM

System

A system is an arrangement in which all its unit assemble work together according to a set of

rules. It can also be defined as a way of working, organizing or doing one or many tasks

according to a fixed plan. For example, a watch is a time displaying system. Its components

follow a set of rules to show time. If one of its parts fails, the watch will stop working. So we can

say, in a system, all its subcomponents depend on each other.

Embedded System

As its name suggests, Embedded means something that is attached to another thing. An

embedded system can be thought of as a computer hardware system having software embedded

in it. An embedded system can be an independent system or it can be a part of a large system. An

embedded system is a microcontroller or microprocessor based system which is designed to

perform a specific task. For example, a fire alarm is an embedded system; it will sense only

smoke.

An embedded system has three components −

 It has hardware.

 It has application software.

 It has Real Time Operating system (RTOS) that supervises the application software and

provide mechanism to let the processor run a process as per scheduling by following a

plan to control the latencies. RTOS defines the way the system works. It sets the rules

during the execution of application program. A small scale embedded system may not

have RTOS.

So we can define an embedded system as a Microcontroller based, software driven, reliable, real-

time control system.

Characteristics of an Embedded System

 Single-functioned − An embedded system usually performs a specialized operation and

does the same repeatedly. For example: A pager always functions as a pager.

 Tightly constrained − All computing systems have constraints on design metrics, but

those on an embedded system can be especially tight. Design metrics is a measure of an

implementation's features such as its cost, size, power, and performance. It must be of a

size to fit on a single chip, must perform fast enough to process data in real time and

consume minimum power to extend battery life.

 Reactive and Real time − Many embedded systems must continually react to changes in

the system's environment and must compute certain results in real time without any

delay. Consider an example of a car cruise controller; it continually monitors and reacts

to speed and brake sensors. It must compute acceleration or de-accelerations repeatedly

within a limited time; a delayed computation can result in failure to control of the car.

 Microprocessors based − It must be microprocessor or microcontroller based.

 Memory − It must have a memory, as its software usually embeds in ROM. It does not

need any secondary memories in the computer.

 Connected − It must have connected peripherals to connect input and output devices.

 HW-SW systems − Software is used for more features and flexibility. Hardware is used

for performance and security.

Advantages

 Easily Customizable

 Low power consumption

 Low cost

 Enhanced performance

Disadvantages

 High development effort

 Larger time to market

Basic Structure of an Embedded System

The following illustration shows the basic structure of an embedded system −

 Sensor − It measures the physical quantity and converts it to an electrical signal which

can be read by an observer or by any electronic instrument like an A2D converter. A

sensor stores the measured quantity to the memory.

 A-D Converter − An analog-to-digital converter converts the analog signal sent by the

sensor into a digital signal.

 Processor & ASICs − Processors process the data to measure the output and store it to

the memory.

 D-A Converter − A digital-to-analog converter converts the digital data fed by the

processor to analog data

 Actuator − An actuator compares the output given by the D-A Converter to the actual

(expected) output stored in it and stores the approved output.

Microprocessor vs Microcontroller

Three Key Differences Between Microcontrollers and Microprocessors

 Cost: Generally, microcontrollers cost less than microprocessors. Microprocessors are

typically manufactured for use with more expensive devices. They are also significantly

more complex, as they are meant to perform a variety of computational tasks while

microcontrollers usually perform a dedicated function. With a microcontroller, engineers

write and compile the code intended for the specific application and upload it into the

microcontroller, which internally houses all of the necessary computing features and

components to execute the code.

 Speed: When it comes to clock speed, there is a significant difference. This relates back

to the idea that microcontrollers are meant to handle a specific task or application, while a

microprocessor is meant for more complex, robust, and unpredictable computing tasks.

That means using just the right amount of speed and power to get the job done – no more

and no less. As a result, many microprocessors are clocking speeds of up to 4 GHz while

microcontrollers can operate with much slower speeds of 200 MHz or less.

 Power Consumption: One of the key advantages associated with microcontrollers is

their low power consumption. A computer processor that performs a dedicated task

requires less speed, and therefore less power, than a processor with robust computational

capacity. Power consumption plays an important role in implementation design: a

processor that consumes a lot of power may need to be plugged in or supported by an

external power supply, whereas a processor that consumes limited power could be

powered for a long time by just a small battery.

 Basic Difference

 Microprocessor Microcontroller

Microprocessor acts as the heart of
computer system.

The microcontroller acts as the heart of
the embedded system.

It is a processor in which memory and
I/O output component is connected

externally.

It is a controlling device in which
memory and I/O output component are

present internally.

Since memory and I/O output is to be
connected externally. Therefore the
circuit is more complex.

Since on-chip memory and I/O output
component is available. Therefore the
circuit is less complex.

It cannot be used in a compact system.

Therefore microprocessor is inefficient.

It can be used in a compact system.

Therefore microcontroller is more
efficient.

The microprocessor has fewer registers.
Therefore most of the operations are

memory-based.

The microcontroller has more registers.

Therefore a program is easier to write.

A microprocessor having a zero status
flag.

A microcontroller has no zero flag.

It is mainly used in personal computers.

It is mainly used in washing machines,
air conditioners etc.

Microprocessor Microcontroller

Microprocessor assimilates the function of a

central processing unit (CPU) on to a single
integrated circuit (IC).

A microcontroller can be considered as a small

computer that has a processor and some
other components in order to make it a
computer.

Microprocessors are mainly used in designing

general-purpose systems from small to large
and complex systems like supercomputers.

Microcontrollers are used in automatically

controlled devices.

Microprocessors are basic components of
personal computers.

Microcontrollers are generally used in
embedded systems

The computational capacity of the

microprocessor is very high. Hence can
perform complex tasks.

Less computational capacity when compared

to microprocessors. Usually used for simpler
tasks.

A microprocessor-based system can perform
numerous tasks.

A microcontroller based system can perform
single or very few tasks.

Microprocessors have integrated Math
Coprocessor. Complex mathematical

calculations which involve floating point can
be performed with great ease.

Microcontrollers do not have math
coprocessors. They use software to perform

floating-point calculations which slows down
the device.

The main task of the microprocessor is to

perform the instruction cycle repeatedly. This
includes fetch, decode and execute.

In addition to performing the tasks of fetch,

decode and execute, a microcontroller also
controls its environment based on the output
of the instruction cycle.

In order to build or design a system

(computer), a microprocessor has to be
connected externally to some other

components like Memory (RAM and ROM) and
Input / Output ports.

The IC of a microcontroller has memory (both

RAM and ROM) integrated into it along with
some other components like I / O devices and

timers.

The overall cost of a system built using a
microprocessor is high. This is because of the

requirement of external components.

The cost of a system built using a
microcontroller is less as all the components

are readily available.

Generally, power consumption and dissipation Power consumption is less.

Current Trends in Embedded Systems

An embedded system is an application-specific system designed with a combination of hardware

and software to meet real-time constraints. The key characteristics of embedded industrial

systems include speed, security, size, and power. The major trends in the embedded systems

market revolve around the improvement of these characteristics.

To give context into how large the embedded systems industry is, here are a few statistics:

 The global market for the embedded systems industry was valued at $68.9 billion in 2017

and is expected to rise to $105.7 billion by the end of 2025.

 40% of the industrial share for embedded systems market is shared by the top 10 vendors.

 In 2015, embedded hardware contributed to 93% of the market share and it is expected to

dominate the market over embedded software in the upcoming years as well.

are high because of the external devices.
Hence it requires an external cooling system.

The clock frequency is very high usually in the
order of Giga Hertz.

The clock frequency is less usually in the
order of MegaHertz.

Instruction throughput is given higher priority

than interrupt latency.

In contrast, microcontrollers are designed to

optimize interrupt latency.

Have few bit manipulation instructions

Bit manipulation is powerful and widely used

feature in microcontrollers. They have
numerous bit manipulation instructions.

Generally, microprocessors are not used in
real-time systems as they are severely

dependent on several other components.

Microcontrollers are used to handle real-time
tasks as they are single programmed, self-

sufficient and task-oriented devices.

https://internetofthingsagenda.techtarget.com/definition/embedded-system
http://www.digitaljournal.com/pr/4006746

eal time system is defined as a system in which job has deadline, job has to finished by the

deadline (strictly finished). If a result is delayed, huge loss may happen.

1. Hard Real Time System :

Hard real time is a system whose operation is incorrect whose result is not produce according to

time constraint.

For example,

1. Air Traffic Control

2. Medical System

2. Soft Real Time System :

Soft real time system is a system whose operation is degrade if results are not produce according

to the specified timing requirement.

For example<

1. Multimedia Transmission and Reception

2. Computer Games

Difference between Hard real time and Soft real time system :

HARD REAL TIME SYSTEM SOFT REAL TIME SYSTEM

In hard real time system, the size of

data file is small or medium.

In soft real time system, the size of data file is

large.

In this system response time is in

millisecond. In this system response time are higher.

Peak load performance should be

predictable.

In soft real time system, peak load can be

tolerated.

In this system safety is critical. In this system safety is not critical.

HARD REAL TIME SYSTEM SOFT REAL TIME SYSTEM

A hard real time system is very

restrictive. A Soft real time system is less restrictive.

In case of an error in a hard real time

system, the computation is rolled

back.

In case of an soft real time system, computation

is rolled back to previously established a

checkpoint.

Satellite launch, Railway signaling

system etc.

DVD player, telephone switches, electronic

games etc.

LIFE CYCLE MANAGEMENT

WATER FALL MODEL

• The Waterfall Model was the first Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model. It is very simple to understand and use. In a

waterfall model, each phase must be completed before the next phase can begin and there

is no overlapping in the phases.

• The Waterfall model is the earliest SDLC approach that was used for software

development.

• The waterfall Model illustrates the software development process in a linear sequential

flow. This means that any phase in the development process begins only if the previous

phase is complete. In this waterfall model, the phases do not overlap.

• Waterfall approach was first SDLC Model to be used widely in Software Engineering to

ensure success of the project.

• In "The Waterfall" approach, the whole process of software development is divided into

separate phases.

• In this Waterfall model, typically, the outcome of one phase acts as the input for the next

phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

The sequential phases in Waterfall model are

• Requirement Gathering and analysis − All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification

document.

• System Design − The requirement specifications from first phase are studied in this

phase and the system design is prepared. This system design helps in specifying hardware

and system requirements and helps in defining the overall system architecture.

• Implementation − With inputs from the system design, the system is first developed in

small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality, which is referred to as Unit Testing.

• Integration and Testing − All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures.

• Deployment of system − Once the functional and non-functional testing is done; the

product is deployed in the customer environment or released into the market.

• Maintenance − There are some issues which come up in the client environment. To fix

those issues, patches are released. Also to enhance the product some better versions are

released. Maintenance is done to deliver these changes in the customer environment.

• All these phases are cascaded to each other in which progress is seen as flowing steadily

downwards (like a waterfall) through the phases.

• The next phase is started only after the defined set of goals are achieved for previous

phase and it is signed off, so the name "Waterfall Model".

• In this model, phases do not overlap.

Waterfall Model – Advantages

• Simple and easy to understand and use

• Easy to manage due to the rigidity of the model. Each phase has specific deliverables and

a review process.

• Phases are processed and completed one at a time.

• Works well for smaller projects where requirements are very well understood.

• Clearly defined stages.

• Well understood milestones.

• Easy to arrange tasks.

• Process and results are well documented.

Waterfall Model – Disadvantages

• No working software is produced until late during the life cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are at a moderate to high risk of

changing. So, risk and uncertainty is high with this process model.

• It is difficult to measure progress within stages.

• Cannot accommodate changing requirements.

• Adjusting scope during the life cycle can end a project.

• Integration is done as a "big-bang. at the very end, which doesn't allow identifying any

technological or business bottleneck or challenges early.

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

What is an Embedded System?

An Embedded System can be best described as a system which has both the
hardware and software and is designed to do a specific task. A good example for
an Embedded System, which many households have, is a Washing Machine.

We use washing machines almost daily but wouldn’t get the idea that it is an
embedded system consisting of a Processor (and other hardware as well) and
software.

It takes some inputs from the user like wash cycle, type of clothes, extra soaking
and rinsing, spin rpm, etc., performs the necessary actions as per the instructions
and finishes washing and drying the clothes. If no new instructions are given for
the next wash, then the washing machines repeats the same set of tasks as the
previous wash.

Embedded Systems can not only be stand-alone devices like Washing Machines
but also be a part of a much larger system. An example for this is a Car. A
modern day Car has several individual embedded systems that perform their
specific tasks with the aim of making a smooth and safe journey.

https://www.electronicshub.org/wp-content/uploads/2021/04/Embedded-System-Example.jpg

Some of the embedded systems in a Car are Anti-lock Braking System (ABS),
Temperature Monitoring System, Automatic Climate Control, Tire Pressure
Monitoring System, Engine Oil Level Monitor, etc.

Programming Embedded Systems

As mentioned earlier, Embedded Systems consists of both Hardware and
Software. If we consider a simple Embedded System, the main Hardware Module
is the Processor. The Processor is the heart of the Embedded System and it can
be anything like a Microprocessor, Microcontroller, DSP, CPLD (Complex
Programmable Logic Device) or an FPGA (Field Programmable Gated Array).

All these devices have one thing in common: they are programmable i.e., we can
write a program (which is the software part of the Embedded System) to define
how the device actually works.

Embedded Software or Program allow Hardware to monitor external events
(Inputs / Sensors) and control external devices (Outputs) accordingly. During this
process, the program for an Embedded System may have to directly manipulate
the internal architecture of the Embedded Hardware (usually the processor) such
as Timers, Serial Communications Interface, Interrupt Handling, and I/O Ports
etc.

From the above statement, it is clear that the Software part of an Embedded
System is equally important as the Hardware part. There is no point in having
advanced Hardware Components with poorly written programs (Software).

There are many programming languages that are used for Embedded Systems
like Assembly (low-level Programming Language), C, C++, JAVA (high-level
programming languages), Visual Basic, JAVA Script (Application level
Programming Languages), etc.

In the process of making a better embedded system, the programming of the
system plays a vital role and hence, the selection of the Programming Language
is very important.

Factors for Selecting the Programming Language

The following are few factors that are to be considered while selecting the
Programming Language for the development of Embedded Systems.

• Size: The memory that the program occupies is very important as
Embedded Processors like Microcontrollers have a very limited amount of
ROM (Program Memory).

• Speed: The programs must be very fast i.e., they must run as fast as
possible. The hardware should not be slowed down due to a slow running
software.

• Portability: The same program can be compiled for different processors.
• Ease of Implementation
• Ease of Maintenance
• Readability

Earlier Embedded Systems were developed mainly using Assembly Language.
Even though Assembly Language is closest to the actual machine code
instructions and produces small size hex files, the lack of portability and high
amount of resources (time and man power) spent on developing the code, made
the Assembly Language difficult to work with.

There are other high-level programming languages that offered the above
mentioned features but none were close to C Programming Language. Some of
the benefits of using Embedded C as the main Programming Language:

• Significantly easy to write code in C
• Consumes less time when compared to Assembly
• Maintenance of code (modifications and updates) is very simple
• Make use of library functions to reduce the complexity of the main code
• You can easily port the code to other architecture with very little

modifications

Introduction to Embedded C Programming Language

Before going in to the details of Embedded C Programming Language and basics
of Embedded C Program, we will first talk about the C Programming Language.

The C Programming Language, developed by Dennis Ritchie in the late 60’s and
early 70’s, is the most popular and widely used programming language. The C
Programming Language provided low level memory access using an
uncomplicated compiler (a software that converts programs to machine code)
and achieved efficient mapping to machine instructions.

The C Programming Language became so popular that it is used in a wide range
of applications ranging from Embedded Systems to Super Computers.

Embedded C Programming Language, which is widely used in the development
of Embedded Systems, is an extension of C Program Language. The Embedded
C Programming Language uses the same syntax and semantics of the C
Programming Language like main function, declaration of datatypes, defining
variables, loops, functions, statements, etc.

The extension in Embedded C from standard C Programming Language include
I/O Hardware Addressing, fixed point arithmetic operations, accessing address
spaces, etc.

Difference between C and Embedded C

There is actually not much difference between C and Embedded C apart from
few extensions and the operating environment. Both C and Embedded C are ISO
Standards that have almost same syntax, datatypes, functions, etc.

Embedded C is basically an extension to the Standard C Programming
Language with additional features like Addressing I/O, multiple memory
addressing and fixed-point arithmetic, etc.

C Programming Language is generally used for developing desktop applications,
whereas Embedded C is used in the development of Microcontroller based
applications.

Basics of Embedded C Program

Now that we have seen a little bit about Embedded Systems and Programming
Languages, we will dive in to the basics of Embedded C Program. We will start
with two of the basic features of the Embedded C Program: Keywords and
Datatypes.

Why program the 8051 in C?

Compilers produce hex files that we download into the ROM of the microcontroller. The
size of the hex file produced by the compiler is one of the main concerns of microcontroller
programmers, for two reasons:
1. Microcontrollers have limited on-chip ROM.
2. The code space for the 8051 is limited to 64K bytes.
How does the choice of programming language affect the compiled program size? While
Assembly language produces a hex file that is much smaller than C, programming in
Assembly language is tedious and time consuming. C programming, on the other hand,
is less time consuming and much easier to write, but the hex file size produced is much
larger than if we used Assembly language. The following are some of the major reasons
for writing programs in C instead of Assembly:
1. It is easier and less time consuming to write in C than Assembly.
2. C is easier to modify and update.
3. You can use code available in function libraries.
4. C code is portable to other microcontrollers with little or no modification.

Keywords in Embedded C

A Keyword is a special word with a special meaning to the compiler (a C
Compiler for example, is a software that is used to convert program written in C
to Machine Code). For example, if we take the Keil’s Cx51 Compiler (a popular C
Compiler for 8051 based Microcontrollers) the following are some of the
keywords:

• bit
• sbit
• sfr
• small
• large

The following table lists out all the keywords associated with the Cx51 C
Compiler.

at alien bdata

bit code compact

data far idata

interrupt large pdata

priority reentrant sbit

sfr sfr16 small

task using xdata

SECTION 7.1: DATA TYPES AND TIME DELAY IN 8051 C
In this section we first discuss C data types for the 8051 and then provide code for
time delay functions.
C data types for the 8051
Since one of the goals of 8051 C programmers is to create smaller hex files, it is
worthwhile to re-examine C data types for 8051 C. In other words, a good
understanding of C data types for the 8051 can help programmers to create smaller
hex files. In this section we focus on the specific C data types that are most useful and
widely used for the 8051 microcontroller.

Unsigned char
Since the 8051 is an 8-bit microcontroller, the character data type is the most natural
choice for many applications. The unsigned char is an 8-bit data type that takes a value
in the range of 0 – 255 (00 – FFH). It is one of the most widely used data types for the
8051. In many situations, such as setting a counter value.

where there is no need for signed data we should use the unsigned char instead of the
signed char. Remember that C compilers use the signed char as the default if we do not
put the keyword unsigned in front of the char (see Example 7-1). We can also use the
unsigned char data type for a string of ASCII characters, including extended ASCII
characters. Example 7-2 shows a string of ASCII characters. See Example 7-3 for
toggling ports.
In declaring variables, we must pay careful attention to the size of the data and try to use
unsigned char instead of int if possible. Because the 8051 has a limited number of
registers and data RAM locations, using the int in place of the char data type can lead to
a larger size hex file. Such a misuse of the data types in compilers such as Microsoft
Visual C++ for x86 IBM PCs is not a significant issue.
Example 7-2

Example 7-1

Run the above program on your simulator to see how PI displays values 30H, 31H,
32H. 33H. 34H. 35H. 41H. 42H, 43H, and 44H, the hex values for ASCII 0, 1, 2, and so
on.

Example 7-3
Write an 8051 C program to toggle all the bits of PI continuously. Solution:
// Toggle PI forever ^include <reg51.h> void main(void)

Run the above program on your simulator to see how PI toggles continuously. Examine
the asm code generated by the C compiler.
Signed char
The signed char is an 8-bit data type that uses the most significant bit (D7 of D7 – DO) to
represent the – or + value. As a result, we have only 7 bits for the magnitude of the signed
number, giving us values from -128 to +127. In situations where + and – are needed to
represent a given quantity such as temperature, the use of the signed char data type is a
must.
Again notice that if we do not use the keyword unsigned, the default is the signed value.
For that reason we should stick with the unsigned char unless the data needs to be
represented as signed numbers.
Example 7-4

Run the above program on your simulator to see how PI displays values of 1, FFH, 2,
FEH, 3, FDH, 4, and FCH, the hex values for +!,-!, +2, -2, and so on.
Unsigned int
The unsigned int is a 16-bit data type that takes a value in the range of 0 to 65535 (0000
– FFFFH). In the 8051, unsigned int is used to define 16-bit variables such as memory
addresses. It is also used to set counter values of more than 256. Since the 8051 is an
8-bit microcontroller and the int data type takes two bytes of RAM, we must not use the
int data type unless we have to. Since registers and memory accesses are in 8-bit chunks,
the misuse of int variables will result in a larger hex file. Such misuse is not a big deal in
PCs with 256 megabytes of memory, 32-bit Pentium registers and memory accesses, and
a bus speed of 133 MHz. However, for 8051 programming do not use unsigned int in
places where unsigned char will do the job. Of course the compiler will not generate an
error for this misuse, but the overhead in hex file size is noticeable. Also in situations
where there is no need for signed data (such as setting counter values), we should use
unsigned int instead of signed int. This gives a much wider range for data declaration.
Again, remember that the C compiler uses signed int as the default if we do not use the
keyword unsigned.
Signed int
Signed int is a 16-bit data type that uses the most significant bit (015 of D15 – DO) to
represent the – or + value. As a result, we have only 15 bits for the magnitude of the
number, or values from -32,768 to +32,767.
Sbit (single bit)
The sbit keyword is a widely used 8051 C data type designed specifically to access single-
bit addressable registers. It allows access to the single bits of the SFR registers. As we
saw in Chapter 5, some of the SFRs are bit^addressable. Among the SFRs that are widely
used and are also bit-addressable are ports PO -P3. We can use sbit to access the
individual bits of the ports as shown in Example 7-5.
Example 7-5
Write an 8051 C program to toggle bit DO of the port PI (Pl.O) 50,000 times.

Bit and sfr

The bit data type allows access to single bits of bit-addressable memory spaces 20 –
2FH. Notice that while the sbit data type is used for bit-addressable SFRs, the bit data
type is used for the bit-addressable section of RAM space 20 -2FH. To access the byte-
size SFR registers, we use the sfr data type. We will see the use of sbit, bit, and sfr data
types in the next section.
Table 7-1; Some Widely Used Data Types for 8051 C

Time Delay
There are two ways to create a time delay in 8051 C:
1. Using a simple for loop
2. Using the 8051 timers
In either case, when we write a time delay we must use the oscilloscope to measure the
duration of our time delay. Next, we use the for loop to create time delays. Discussion of
the use of the 8051 timer to create time delays is postponed until Chapter 9.
In creating a time delay using a for loop, we must be mindful of three factors that can
affect the accuracy of the delay.
1. The 8051 design. Since the original 8051 was designed in 1980, both the fields

of 1C technology and microprocessor architectural design have seen great
advancements. As we saw in Chapter 3, the number of machine cycles and the
number of clock periods per machine cycle vary among different versions of
the 8051/52 microcontroller. While the original 8051/52 design used 12 clock

periods per machine cycle, many of the newer generations of the 8051 use
fewer clocks per machine cycle. For example, the DS5000 uses 4 clock peri
ods per machine cycle, while the DS89C420 uses only one clock per machine
cycle.

2. The crystal frequency connected to the XI – X2 input pins. The duration of the
clock period for the machine cycle is a function of this crystal frequency.

3. Compiler choice. The third factor that affects the time delay is the compiler
used to compile the C program. When we program in Assembly language, we
can control the exact instructions and their sequences used in the delay sub
routine. In the case of C programs, it is the C compiler that converts the C
statements and functions to Assembly language instructions. As a result, dif
ferent compilers produce different code. In other words, if we compile a given
8051 C programs with different compilers, each compiler produces different
hex code.

For the above reasons, when we write time delays for C, we must use the oscilloscope to
measure the exact duration. Look at Examples 7-6 through 7-8.
Example 7-6
Write an 8051 C program to toggle bits of PI continuously forever with some
delay. Solution:
// Toggle PI forever with some delay in between “on” and “off”,

^include <reg51.h>

Example 7-7
Write an 8051 C program to toggle the bits of PI ports continuously with a 250 ms
delay.
Solution:
The program below is tested for the DS89C420 with XTAL = 11.0592 MHz.

Example 7-8

Basic Structure of an Embedded C Program (Template

for Embedded C Program)

The next thing to understand in the Basics of Embedded C Program is the basic
structure or Template of Embedded C Program. This will help us in
understanding how an Embedded C Program is written.

The following part shows the basic structure of an Embedded C Program.

•
o Multiline Comments Denoted using /*……*/
o Single Line Comments Denoted using //
o Preprocessor Directives #include<…> or #define
o Global Variables Accessible anywhere in the program
o Function Declarations Declaring Function
o Main Function Main Function, execution begins here

{
Local Variables Variables confined to main function
Function Calls Calling other Functions
Infinite Loop Like while(1) or for(;;)
Statements
….
….
}

o Function Definitions Defining the Functions
{
Local Variables Local Variables confined to this Function
Statements
….
….
}

Before seeing an example with respect to 8051 Microcontroller, we will first see
the different components in the above structure.

Different Components of an Embedded C Program

https://www.electronicshub.org/8051-microcontroller-introduction/

Comments: Comments are readable text that are written to help us (the reader)
understand the code easily. They are ignored by the compiler and do not take up
any memory in the final code (after compilation).

There are two ways you can write comments: one is the single line comments
denoted by // and the other is multiline comments denoted by /*….*/.

Preprocessor Directive: A Preprocessor Directive in Embedded C is an
indication to the compiler that it must look in to this file for symbols that are not
defined in the program.

In C Programming Language (also in Embedded C), Preprocessor Directives are
usually represented using # symbol like #include… or #define….

In Embedded C Programming, we usually use the preprocessor directive to
indicate a header file specific to the microcontroller, which contains all the SFRs
and the bits in those SFRs.

In case of 8051, Keil Compiler has the file “reg51.h”, which must be written at the
beginning of every Embedded C Program.

Global Variables: Global Variables, as the name suggests, are Global to the
program i.e., they can be accessed anywhere in the program.

Local Variables: Local Variables, in contrast to Global Variables, are confined to
their respective function.

Main Function: Every C or Embedded C Program has one main function, from
where the execution of the program begins.

Basic Embedded C Program

Till now, we have seen a few Basics of Embedded C Program like difference
between C and Embedded C, basic structure or template of an Embedded C
Program and different components of the Embedded C Program.

Continuing further, we will explore in to basics of Embedded C Program with the
help of an example. In this example, we will use an 8051 Microcontroller to blink
LEDs connected to PORT1 of the microcontroller.

Example of Embedded C Program

The following image shows the circuit diagram for the example circuit. It contains
an 8051 based Microcontroller (AT89S52) along with its basic components (like
RESET Circuit, Oscillator Circuit, etc.) and components for blinking LEDs (LEDs
and Resistors).

In order to write the Embedded C Program for the above circuit, we will use the
Keil C Compiler. This compiler is a part of the Keil µVision IDE. The program is
shown below.

Sample Code
#include<reg51.h> // Preprocessor Directive
void delay (int); // Delay Function Declaration

https://www.electronicshub.org/basic-electronic-components/

void main(void) // Main Function
{
P1 = 0x00;
/* Making PORT1 pins LOW. All the LEDs are OFF.
 * (P1 is PORT1, as defined in reg51.h) */

while(1) // infinite loop
{
P1 = 0xFF; // Making PORT1 Pins HIGH i.e. LEDs are ON.
delay(1000);
/* Calling Delay function with Function parameter as 1000.
 * This will cause a delay of 1000mS i.e. 1 second */

P1 = 0x00; // Making PORT1 Pins LOW i.e. LEDs are OFF.
delay(1000);
}
}

void delay (int d) // Delay Function Definition
{
unsigned int i=0; // Local Variable. Accessible only in this function.

/* This following step is responsible for causing delay of 1000mS
 * (or as per the value entered while calling the delay function) */

for(; d>0; d–)
{
for(i=250; i>0; i – -);
for(i=248; i>0; i – -);
}
}

I/O PORT PROGRAMMING

In 8051, I/O operations are done using four ports and 40 pins. The following pin
diagram shows the details of the 40 pins. I/O operation port reserves 32 pins where
each port has 8 pins. The other 8 pins are designated as Vcc, GND, XTAL1, XTAL2,
RST, EA (bar), ALE/PROG (bar), and PSEN (bar).

It is a 40 Pin PDIP (Plastic Dual Inline Package)

Note − In a DIP package, you can recognize the first pin and the last pin by the cut
at the middle of the IC. The first pin is on the left of this cut mark and the last pin
(i.e. the 40th pin in this case) is to the right of the cut mark.

I/O Ports and their Functions

The four ports P0, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon
RESET, all the ports are configured as inputs, ready to be used as input ports.
When the first 0 is written to a port, it becomes an output. To reconfigure it as an
input, a 1 must be sent to a port.

Port 0 (Pin No 32 – Pin No 39)

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3
ports, we normally connect P0 to 10K-ohm pull-up resistors to use it as an input or
output port being an open drain.

It is also designated as AD0-AD7, allowing it to be used as both address and data.
In case of 8031 (i.e. ROMless Chip), when we need to access the external ROM,
then P0 will be used for both Address and Data Bus. ALE (Pin no 31) indicates if P0
has address or data. When ALE = 0, it provides data D0-D7, but when ALE = 1, it
has address A0-A7. In case no external memory connection is available, P0 must
be connected externally to a 10K-ohm pull-up resistor.

MOV A,#0FFH ;(comments: A=FFH(Hexadecimal i.e. A=1111 1111)

MOV P0,A ;(Port0 have 1's on every pin so that it works as

Input)

Port 1 (Pin 1 through 8)

It is an 8-bit port (pin 1 through 8) and can be used either as input or output. It
doesn't require pull-up resistors because they are already connected internally.
Upon reset, Port 1 is configured as an input port. The following code can be used to
send alternating values of 55H and AAH to Port 1.

;Toggle all bits of continuously

MOV A,#55

BACK:

MOV P2,A

ACALL DELAY

CPL A ;complement(invert) reg. A

SJMP BACK

If Port 1 is configured to be used as an output port, then to use it as an input port
again, program it by writing 1 to all of its bits as in the following code.

;Toggle all bits of continuously

MOV A ,#0FFH ;A = FF hex

MOV P1,A ;Make P1 an input port

MOV A,P1 ;get data from P1

MOV R7,A ;save it in Reg R7

ACALL DELAY ;wait

MOV A,P1 ;get another data from P1

MOV R6,A ;save it in R6

ACALL DELAY ;wait

MOV A,P1 ;get another data from P1

MOV R5,A ;save it in R5

Port 2 (Pins 21 through 28)

Port 2 occupies a total of 8 pins (pins 21 through 28) and can be used for both input
and output operations. Just as P1 (Port 1), P2 also doesn't require external Pull-up
resistors because they are already connected internally. It must be used along with
P0 to provide the 16-bit address for the external memory. So it is also designated as
(A0–A7), as shown in the pin diagram. When the 8051 is connected to an external
memory, it provides path for upper 8-bits of 16-bits address, and it cannot be used
as I/O. Upon reset, Port 2 is configured as an input port. The following code can be
used to send alternating values of 55H and AAH to port 2.

;Toggle all bits of continuously

MOV A,#55

BACK:

MOV P2,A

ACALL DELAY

CPL A ; complement(invert) reg. A

SJMP BACK

If Port 2 is configured to be used as an output port, then to use it as an input port
again, program it by writing 1 to all of its bits as in the following code.

;Get a byte from P2 and send it to P1

MOV A,#0FFH ;A = FF hex

MOV P2,A ;make P2 an input port

BACK:

MOV A,P2 ;get data from P2

MOV P1,A ;send it to Port 1

SJMP BACK ;keep doing that

Port 3 (Pins 10 through 17)

It is also of 8 bits and can be used as Input/Output. This port provides some
extremely important signals. P3.0 and P3.1 are RxD (Receiver) and TxD
(Transmitter) respectively and are collectively used for Serial Communication. P3.2
and P3.3 pins are used for external interrupts. P3.4 and P3.5 are used for timers T0
and T1 respectively. P3.6 and P3.7 are Write (WR) and Read (RD) pins. These are
active low pins, means they will be active when 0 is given to them and these are
used to provide Read and Write operations to External ROM in 8031 based
systems.

P3 Bit Function Pin

P3.0 RxD 10

P3.1 < TxD 11

P3.2 < Complement of INT0 12

P3.3 < INT1 13

P3.4 < T0 14

P3.5 < T1 15

P3.6 < WR 16

P3.7 < Complement of RD 17

Dual Role of Port 0 and Port 2

 Dual role of Port 0 − Port 0 is also designated as AD0–AD7, as it can be
used for both data and address handling. While connecting an 8051 to
external memory, Port 0 can provide both address and data. The 8051
microcontroller then multiplexes the input as address or data in order to save
pins.

 Dual role of Port 2 − Besides working as I/O, Port P2 is also used to provide
16-bit address bus for external memory along with Port 0. Port P2 is also
designated as (A8– A15), while Port 0 provides the lower 8-bits via A0–A7. In
other words, we can say that when an 8051 is connected to an external
memory (ROM) which can be maximum up to 64KB and this is possible by
16 bit address bus because we know 216 = 64KB. Port2 is used for the
upper 8-bit of the 16 bits address, and it cannot be used for I/O and this is
the way any Program code of external ROM is addressed.

Hardware Connection of Pins

 Vcc − Pin 40 provides supply to the Chip and it is +5 V.

 Gnd − Pin 20 provides ground for the Reference.

 XTAL1, XTAL2 (Pin no 18 & Pin no 19) − 8051 has on-chip oscillator but
requires external clock to run it. A quartz crystal is connected between the
XTAL1 & XTAL2 pin of the chip. This crystal also needs two capacitors of
30pF for generating a signal of desired frequency. One side of each
capacitor is connected to ground. 8051 IC is available in various speeds and
it all depends on this Quartz crystal, for example, a 20 MHz microcontroller
requires a crystal with a frequency no more than 20 MHz.

 RST (Pin No. 9) − It is an Input pin and active High pin. Upon applying a high
pulse on this pin, that is 1, the microcontroller will reset and terminate all
activities. This process is known as Power-On Reset. Activating a power-on
reset will cause all values in the register to be lost. It will set a program
counter to all 0's. To ensure a valid input of Reset, the high pulse must be
high for a minimum of two machine cycles before it is allowed to go low,
which depends on the capacitor value and the rate at which it charges.
(Machine Cycle is the minimum amount of frequency a single instruction
requires in execution).

 EA or External Access (Pin No. 31) − It is an input pin. This pin is an active
low pin; upon applying a low pulse, it gets activated. In case of
microcontroller (8051/52) having on-chip ROM, the EA (bar) pin is connected
to Vcc. But in an 8031 microcontroller which does not have an on-chip ROM,
the code is stored in an external ROM and then fetched by the
microcontroller. In this case, we must connect the (pin no 31) EA to Gnd to
indicate that the program code is stored externally.

 PSEN or Program store Enable (Pin No 29) − This is also an active low pin,
i.e., it gets activated after applying a low pulse. It is an output pin and used
along with the EA pin in 8031 based (i.e. ROMLESS) Systems to allow
storage of program code in external ROM.

 ALE or (Address Latch Enable) − This is an Output Pin and is active high. It
is especially used for 8031 IC to connect it to the external memory. It can be
used while deciding whether P0 pins will be used as Address bus or Data
bus. When ALE = 1, then the P0 pins work as Data bus and when ALE = 0,
then the P0 pins act as Address bus.

I/O Ports and Bit Addressability

It is a most widely used feature of 8051 while writing code for 8051. Sometimes we
need to access only 1 or 2 bits of the port instead of the entire 8-bits. 8051 provides
the capability to access individual bits of the ports.

While accessing a port in a single-bit manner, we use the syntax "SETB X. Y"
where X is the port number (0 to 3), and Y is a bit number (0 to 7) for data bits D0-
D7 where D0 is the LSB and D7 is the MSB. For example, "SETB P1.5" sets high
bit 5 of port 1.

The following code shows how we can toggle the bit P1.2 continuously.

AGAIN:

SETB P1.2

ACALL DELAY

CLR P1.2

ACALL DELAY

SJMP AGAIN

Single-Bit Instructions

Instructions Function

SETB bit Set the bit (bit = 1)

CLR bit clear the bit (bit = 0)

CPL bit complement the bit (bit = NOT bit)

JB bit, target jump to target if bit = 1 (jump if bit)

JNB bit, target jump to target if bit = 0 (jump if no bit)

JBC bit, target jump to target if bit = 1, clear bit (jump if bit, then clear)

SERIAL COMMUNICATION PROGRAMMING

Transmitting and receiving data in 8051 C

SFR registers of the 8051 are accessible directly in 8051 C compilers by using the reg SI.h

file. Examples 10-15 through 10-19 show how to program the serial port in 8051 C. Connect

your 8051 Trainer to the PC’s COM port and use HyperTerminal to test the operation of these

examples.

Example 10-15

Example 10-16

Example 10-17

Example 10-18

Write an 8051 C program to send two different strings to the serial port. Assuming that

SW is connected to pin P2.0, monitor its status and make a decision as follows:

SW = 0: send your first name

SW = 1: send your last name

Assume XTAL = 11.0592 MHz, baud rate of 9600, 8-bit data, 1 stop bit.

Example 10-19

Write an 8051 C program to send the two messages “Normal Speed” and “High Speed”

to the serial port. Assuming that SW is connected to pin P2.0, monitor its status and set

the baud rate as follows:

SW = 0 28,800 baud rate

SW = 1 56K baud rate

Assume that XTAL = 11.0592 MHz for both cases.

Solution:

8051 C compilers and the second serial port

Since many C compilers do not support the second serial port of the DS89C4xO chip, we

have to declare the byte addresses of the new SFR registers using the sfr keyword. Table 10-6

and Figure 10-12 provide the SFR byte and bit addresses for the DS89C4xO chip. Examples

10-20 and 10-21 show C versions of Examples 10-11 and 10-13 in Section 10.4.

Notice in both Examples 10-20 and 10-21 that we are using Tinier 1 to set the baud rate for

the second serial port. Upon reset, Timer 1 is the default for the second serial port of the

DS89C4xO chip.

Example 10-20

Write a C program for the DS89C4xO to transfer letter “A” serially at 4800 baud

continuously. Use the second serial port with 8-bit data and 1 stop bit. We can only use Timer

1 to set the baud rate. Solution:

Example 10-21

Program the DS89C4xO in C to receive bytes of data serially via the second serial port and

put them in PI. Set the baud rate at 9600, 8-bit data, and 1 stop bit. Use Timer 1 for baud rate

generation.

PROGRAMMING OF A/D AND D/A CONVERTERS

Interfacing ADC to 8051
ADC (Analog to digital converter) forms a very essential part in many

embedded projects and this article is about interfacing an ADC to 8051

embedded controller. ADC 0804 is the ADC used here and before going

through the interfacing procedure, we must neatly understand how the ADC

0804 works.

ADC 0804.

ADC0804 is an 8 bit successive approximation analogue to digital converter

from National semiconductors. The features of ADC0804 are differential

analogue voltage inputs, 0-5V input voltage range, no zero adjustment, built

in clock generator, reference voltage can be externally adjusted to convert

smaller analogue voltage span to 8 bit resolution etc. The pin out diagram of

ADC0804 is shown in the figure below.

The voltage at Vref/2 (pin9) of ADC0804 can be externally adjusted to

convert smaller input voltage spans to full 8 bit resolution. Vref/2 (pin9) left

open means input voltage span is 0-5V and step size is 5/255=19.6V. Have a

look at the table below for different Vref/2 voltages and corresponding

analogue input voltage spans.

Vref/2 (pin9) (volts) Input voltage span (volts) Step size (mV)

Left open 0 – 5 5/255 = 19.6

2 0 – 4 4/255 = 15.69

1.5 0 – 3 3/255 = 11.76

1.28 0 – 2.56 2.56/255 = 10.04

1.0 0 – 2 2/255 = 7.84

0.5 0 – 1 1/255 = 3.92

Steps for converting the analogue input and reading the output from

ADC0804.

 Make CS=0 and send a low to high pulse to WR pin to start the conversion.

 Now keep checking the INTR pin. INTR will be 1 if conversion is not finished

and INTR will be 0 if conversion is finished.

 If conversion is not finished (INTR=1) , poll until it is finished.

 If conversion is finished (INTR=0), go to the next step.

 Make CS=0 and send a high to low pulse to RD pin to read the data from the

ADC.

The circuit initiates the ADC to convert a given analogue input , then accepts the

corresponding digital data and displays it on the LED array connected at P0. For

example, if the analogue input voltage Vin is 5V then all LEDs will glow indicating

11111111 in binary which is the equivalent of 255 in decimal. AT89s51 is the

microcontroller used here. Data out pins (D0 to D7) of the ADC0804 are connected to

the port pins P1.0 to P1.7 respectively. LEDs D1 to D8 are connected to the port pins

P0.0 to P0.7 respectively. Resistors R1 to R8 are current limiting resistors. In simple

words P1 of the microcontroller is the input port and P0 is the output port. Control

signals for the ADC (INTR, WR, RD and CS) are available at port pins P3.4 to P3.7

respectively. Resistor R9 and capacitor C1 are associated with the internal clock

circuitry of the ADC. Preset resistor R10 forms a voltage divider which can be used to

apply a particular input analogue voltage to the ADC. Push button S1, resistor

R11 and capacitor C4 forms a debouncing reset mechanism. Crystal X1 and

capacitors C2,C3 are associated with the clock circuitry of the microcontroller.

Program.

ORG 00H

MOV P1,#11111111B // initiates P1 as the input port

MAIN: CLR P3.7 // makes CS=0

 SETB P3.6 // makes RD high

 CLR P3.5 // makes WR low

 SETB P3.5 // low to high pulse to WR for starting convers
ion

WAIT: JB P3.4,WAIT // polls until INTR=0

 CLR P3.7 // ensures CS=0

 CLR P3.6 // high to low pulse to RD for reading the data
from ADC

 MOV A,P1 // moves the digital data to accumulator

 CPL A // complements the digital data (*see the notes)

 MOV P0,A // outputs the data to P0 for the LEDs

 SJMP MAIN // jumps back to the MAIN program

 END

Notes.

 The entire circuit can be powered from 5V DC.

 ADC 0804 has active low outputs and the instruction CPL A complements it t0

have a straight forward display. For example, if input is 5V then the output will

be 11111111 and if CPL A was not used it would have been 00000000 which is

rather awkward to see.

Interfacing DAC with 8051

n this section we will see how DAC (Digital to Analog Converter) using Intel 8051
Microcontroller. We will also see the sinewave generation using DAC.

The Digital to Analog converter (DAC) is a device, that is widely used for converting
digital pulses to analog signals. There are two methods of converting digital signals
to analog signals. These two methods are binary weighted method and R/2R ladder
method. In this article we will use the MC1408 (DAC0808) Digital to Analog
Converter. This chip uses R/2R ladder method. This method can achieve a much
higher degree of precision. DACs are judged by its resolution. The resolution is a
function of the number of binary inputs. The most common input counts are 8, 10, 12
etc. Number of data inputs decides the resolution of DAC. So if there are n digital
input pin, there are 2n analog levels. So 8 input DAC has 256 discrete voltage levels.

The MC1408 DAC (or DAC0808)

In this chip the digital inputs are converted to current. The output current is known
as Iout by connecting a resistor to the output to convert into voltage. The total current
provided by the Iout pin is basically a function of the binary numbers at the input pins
D0 - D7 (D0 is the LSB and D7 is the MSB) of DAC0808 and the reference current Iref.
The following formula is showing the function of Iout

IOut=Iref⟮D72+D64+D58+D416+D332+D264+D1128+D0256⟯IOut=Iref⟮D72+D64

+D58+D416+D332+D264+D1128+D0256⟯

The Iref is the input current. This must be provided into the pin 14. Generally 2.0mA is
used as Iref

We connect the Iout pin to the resistor to convert the current to voltage. But in real life
it may cause inaccuracy since the input resistance of the load will also affect the
output voltage. So practically Iref current input is isolated by connecting it to an Op-
Amp with Rf = 5KΩ as feedback resistor. The feedback resistor value can be
changed as per requirement.

Generating Sinewave using DAC and 8051 Microcontroller

For generating sinewave, at first we need a look-up table to represent the magnitude
of the sine value of angles between 0° to 360°. The sine function varies from -1 to
+1. In the table only integer values are applicable for DAC input. In this example we
will consider 30° increments and calculate the values from degree to DAC input. We
are assuming full-scale voltage of 10V for DAC output. We can follow this formula to
get the voltage ranges.

Vout = 5V + (5 ×sinθ)

Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in θ) sinθ Vout (Voltage Magnitude) Values sent to DAC

0 0 5 128

30 0.5 7.5 192

60 0.866 9.33 238

90 1.0 10 255

120 0.866 9.33 238

150 0.5 7.5 192

Angle(in θ) sinθ Vout (Voltage Magnitude) Values sent to DAC

180 0 5 128

210 -0.5 2.5 64

240 -0.866 0.669 17

270 -1.0 0 0

300 -0.866 0.669 17

330 -0.5 2.5 64

360 0 5 128

Source Code

#include<reg51.h>

sfr DAC = 0x80; //Port P0 address

void main(){

 int sin_value[12] =

{128,192,238,255,238,192,128,64,17,0,17,64};

 int i;

 while(1){

 //infinite loop for LED blinking

 for(i = 0; i<12; i++){

 DAC = sin_value[i];

 }

 }

}

Output

The output will look like this −

Interfacing Stepper Motor with 8051Microcontroller

In this section, we will see how to connect a stepper motor with Intel 8051
Microcontroller. Before discussing the interfacing techniques, we will see what are
the stepper motors and how they work.

Stepper Motor

Stepper motors are used to translate electrical pulses into mechanical movements.
In some disk drives, dot matrix printers, and some other different places the stepper
motors are used. The main advantage of using the stepper motor is the position
control. Stepper motors generally have a permanent magnet shaft (rotor), and it is
surrounded by a stator.

Normal motor shafts can move freely but the stepper motor shafts move in fixed
repeatable increments.

Some parameters of stepper motors −

 Step Angle − The step angle is the angle in which the rotor moves when one
pulse is applied as an input of the stator. This parameter is used to determine
the positioning of a stepper motor.

 Steps per Revolution − This is the number of step angles required for a
complete revolution. So the formula is 360° /Step Angle.

 Steps per Second − This parameter is used to measure a number of steps
covered in each second.

 RPM − The RPM is the Revolution Per Minute. It measures the frequency of
rotation. By this parameter, we can measure the number of rotations in one
minute.

The relation between RPM, steps per revolution, and steps per second is like below:

Steps per Second = rpm x steps per revolution / 60

Interfacing Stepper Motor with 8051 Microcontroller

Weare using Port P0 of 8051 for connecting the stepper motor. HereULN2003 is
used. This is basically a high voltage, high current Darlington transistor array. Each
ULN2003 has seven NPN Darlington pairs. It can provide high voltage output with
common cathode clamp diodes for switching inductive loads.

The Unipolar stepper motor works in three modes.

 Wave Drive Mode − In this mode, one coil is energized at a time. So all four
coils are energized one after another. This mode produces less torque than
full step drive mode.

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

 Full Drive Mode − In this mode, two coils are energized at the same time.
This mode produces more torque. Here the power consumption is also high

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 1 0 0

2 0 1 1 0

3 0 0 1 1

4 1 0 0 1

 Half Drive Mode − In this mode, one and two coils are energized alternately.
At first, one coil is energized then two coils are energized. This is basically a
combination of wave and full drive mode. It increases the angular rotation of
the motor

The following table is showing the sequence of input states in different windings.

Steps Winding A Winding B Winding C Winding D

1 1 0 0 0

2 1 1 0 0

3 0 1 0 0

4 0 1 1 0

5 0 0 1 0

6 0 0 1 1

7 0 0 0 1

8 1 0 0 1

The circuit diagram is like below: We are using the full drive mode.

Example

#include<reg51.h>

sbit LED_pin = P2^0; //set the LED pin as P2.0

void delay(int ms){

 unsigned int i, j;

 for(i = 0; i<ms; i++){ // Outer for loop for given

milliseconds value

 for(j = 0; j< 1275; j++){

 //execute in each milliseconds;

 }

 }

}

void main(){

 int rot_angle[] = {0x0C,0x06,0x03,0x09};

 int i;

 while(1){

 //infinite loop for LED blinking

 for(i = 0; i<4; i++){

 P0 = rot_angle[i];

 delay(100);

 }

 }

}

1

8051 TIMER & Interrupt
PROGRAMMING IN ASSEMBLY AND C

2

PROGRAMMING 8051 TIMERS

• Basic registers of the timer
– Timer 0 and Timer 1 are 16 bits

wide
– each 16-bit timer is accessed as

two separate registers of low byte
and high byte.

3

 PROGRAMMING 8051 TIMERS

• Timer 0 registers
– low byte register is called TL0 (Timer 0 low byte)

and the high byte register is referred to as TH0
(Timer 0 high byte)

– can be accessed like any other register, such as A,
B, R0, R1, R2, etc.

– "MOV TL0, #4 FH" moves the value 4FH into TL0
– "MOV R5, TH0" saves TH0 (high byte of Timer 0) in

R5

4

 PROGRAMMING 8051 TIMERS

 Timer 0 Registers

5

PROGRAMMING 8051 TIMERS

• Timer 1 registers
– also 16 bits
– split into two bytes TL1 (Timer 1

low byte) and TH1 (Timer 1 high
byte)

– accessible in the same way as the
registers of Timer 0.

6

SECTION 9.1: PROGRAMMING 8051
TIMERS

 Timer 1 Registers

7

 PROGRAMMING 8051 TIMERS

• TMOD (timer mode) register
– timers 0 and 1 use TMOD register to set operation

modes (only learn Mode 1 and 2)
– 8-bit register
– lower 4 bits are for Timer 0
– upper 4 bits are for Timer 1
– lower 2 bits are used to set the timer mode

• (only learn Mode 1 and 2)
– upper 2 bits to specify the operation

• (only learn timer operation)

8

 PROGRAMMING 8051 TIMERS

 TMOD Register

9

 PROGRAMMING 8051 TIMERS

• Clock source for timer
– timer needs a clock pulse to tick
– if C/T = 0, the crystal frequency attached to the 8051 is

the source of the clock for the timer
– frequency for the timer is always 1/12th the frequency of

the crystal attached to the 8051
– XTAL = 11.0592 MHz allows the 8051 system to

communicate with the PC with no errors
– In our case, the timer frequency is 1MHz since our

crystal frequency is 12MHz

10

PROGRAMMING 8051 TIMERS
• Mode 1 programming

– 16-bit timer, values of 0000 to FFFFH
– TH and TL are loaded with a 16-bit initial value
– timer started by "SETB TR0" for Timer 0 and "SETB TR1"

for Timer l
– timer count ups until it reaches its limit of FFFFH
– rolls over from FFFFH to 0000H
– sets TF (timer flag)
– when this timer flag is raised, can stop the timer with

"CLR TR0" or "CLR TR1“
– after the timer reaches its limit and rolls over, the

registers TH and TL must be reloaded with the original
value and TF must be reset to 0

11

 PROGRAMMING 8051 TIMERS

 Timer 1 with External Input (Mode 1)

12

 PROGRAMMING 8051 TIMERS

• Steps to program in mode 1
– Set timer mode 1 or 2
– Set TL0 and TH0 (for mode 1 16 bit

mode)
– Set TH0 only (for mode 2 8 bit auto

reload mode)
– Run the timer
– Monitor the timer flag bit

13

In the following program, we are creating a square wave of
50% duty cycle (with equal portions high and low) on the
P1.5 bit.
Timer 0 is used to generate the time delay

14

 PROGRAMMING 8051 TIMERS

• Finding values to be loaded into
the timer
– XTAL = 11.0592 MHz (12MHz)
– divide the desired time delay by

1.085 s (1 s) to get n
– 65536 – n = N
– convert N to hex yyxx
– set TL = xx and TH = yy

15

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

• T = 1/50 Hz = 20 ms
• 1/2 of it for the high and low

portions of the pulse = 10 ms
• 10 ms / 1.085 us = 9216
• 65536 - 9216 = 56320 in decimal

= DC00H
• TL = 00 and TH = DCH
• The calculation for 12MHz crystal

uses the same steps

16

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

17

PROGRAMMING 8051 TIMERS

• Generating a large time delay
– size of the time delay depends

•crystal frequency
• timer's 16-bit register in mode 1

– largest time delay is achieved by
making both TH and TL zero

Examine the following program and find the time
delay in seconds. Exclude the time delay due to the
instructions in the loop.

18

19

Examine the following program and find the time delay in
seconds. Exclude the time delay due to the instructions in the
loop.

20

 PROGRAMMING 8051 TIMERS (for
information only)
• Mode 0

– works like mode 1
– 13-bit timer instead of 16bit
– 13-bit counter hold values 0000 to

1FFFH
– when the timer reaches its

maximum of 1FFFH, it rolls over to
0000, and TF is set

21

PROGRAMMING 8051 TIMERS
• Mode 2 programming

– 8-bit timer, allows values of 00 to FFH
– TH is loaded with the 8-bit value
– a copy is given to TL
– timer is started by ,"SETB TR0" or "SETB TR1“
– starts to count up by incrementing the TL register
– counts up until it reaches its limit of FFH
– when it rolls over from FFH to 00, it sets high TF
– TL is reloaded automatically with the value in TH
– To repeat, clear TF
– mode 2 is an auto-reload mode

22

 PROGRAMMING 8051 TIMERS

• Steps to program in mode 2
1. load TMOD, select mode 2
2. load the TH
3. start timer
4. monitor the timer flag (TF) with

"JNB”
5. get out of the loop when TF=1
6. clear TF
7. go back to Step 4 since mode 2 is

auto-reload

23

 PROGRAMMING 8051 TIMERS

• Assemblers and negative
values
– can let the assembler calculate

the value for TH and TL which
makes the job easier

– "MOV TH1, # -100", the
assembler will calculate the -100
= 9CH

– "MOV TH1,#high(-10000) "
– "MOV TL1,#low(-10000) "

24

 COUNTER PROGRAMMING
• C/T bit in TMOD register

– C/T bit in the TMOD register decides the source of the clock for
the timer

– C/T = 0, timer gets pulses from crystal
– C/T = 1, the timer used as counter and gets pulses from

outside the 8051
– C/T = 1, the counter counts up as pulses are fed from pins 14

and 15
– pins are called T0 (Timer 0 input) and T1 (Timer 1 input)
– these two pins belong to port 3
– Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and

the counter counts up for each clock pulse coming from that
pin

– Timer 1, when C/T = 1 each clock pulse coming in from pin
P3.5 makes the counter count up

25

COUNTER PROGRAMMING

Port 3 Pins Used For Timers 0 and 1

26

 PROGRAMMING 8051 TIMERS

 Timer 0 with External Input (Mode 1)

27

 COUNTER PROGRAMMING

 Timer 1 with External Input (Mode 2)

28

SECTION 9.2: COUNTER
PROGRAMMING

29

COUNTER PROGRAMMING

 Port 3 Pins Used For Timers 0 and 1

30

COUNTER PROGRAMMING

• TCON register
– TR0 and TR1 flags turn on or off the timers
– bits are part of a register called TCON (timer

control)
– upper four bits are used to store the TF and TR

bits of both Timer 0 and Timer 1
– lower four bits are set aside for controlling the

interrupt bits
– "SETB TRl" and "CLR TRl“
– "SETB TCON. 6" and "CLR TCON. 6“

31

 COUNTER PROGRAMMING

 Equivalent Instructions for the Timer Control Register (TCON)

32

 COUNTER PROGRAMMING

• The case of GATE = 1 in TMOD
– GATE = 0, the timer is started with

instructions "SETB TR0" and "SETB
TR1“

– GATE = 1, the start and stop of the
timers are done externally through
pins P3.2 and P3.3

– allows us to start or stop the timer
externally at any time via a simple
switch

33

COUNTER PROGRAMMING

 Timer/Counter 0

34

 COUNTER PROGRAMMING

 Timer/Counter 1

35

Assuming that clock pulses are fed into pin T1, write a
program for counter 1 in mode 2 to count the pulses and
display the state of the TL1 count on P2. (for information
only)

• An interrupt is an external or
internal event that interrupts the
microcontroller
– To inform it that a device needs its

service
• A single microcontroller can serve

several devices by two ways
– Interrupts

• Whenever any device needs its service,
the device notifies the microcontroller
by sending it an interrupt signal

• Upon receiving an interrupt signal, the
microcontroller interrupts whatever it is
doing and serves the device

– The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt
handler

–Polling
• The microcontroller continuously

monitors the status of a given device
– ex. JNB TF, target
• When the conditions met, it performs the

service
• After that, it moves on to monitor the

next device until every one is serviced
– Polling can monitor the status of several devices

and serve each of them as certain conditions are
met

• The polling method is not efficient, since
it wastes much of the microcontroller’s
time by polling devices that do not need
service

• The advantage of interrupts is:
– The microcontroller can serve many

devices (not all at the same time)
•Each device can get the attention

of the microcontroller based on
the assigned priority

•For the polling method, it is not
possible to assign priority since it
checks all devices in a round-robin
fashion

– The microcontroller can also ignore
(mask) a device request for service
•This is not possible for the polling

method

• For every interrupt, there must be
an interrupt service routine (ISR),
or interrupt handler
– When an interrupt is invoked, the

microcontroller runs the interrupt
service routine

– There is a fixed location in memory
that holds the address of its ISR
• The group of memory locations set

aside to hold the addresses of ISRs is
called interrupt vector table

• Upon activation of an interrupt,
the microcontroller goes through:
– I t f in ishes the instruct ion i t i s

executing and saves the address of
the next instruction (PC) on the
stack

– It also saves the current status of all
the registers internally (not on the
stack)

– I t jumps to a f ixed locat ion in
memory, called the interrupt vector
table, that holds the address of the
ISR

–It gets the address of the ISR from the
interrupt vector table and jumps to ISR

•It starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
interrupt)

–Upon executing the RETI instruction,
the microcontroller returns to the place
where it was interrupted

•It gets the program counter (PC) address
from the stack by popping the top two bytes
of the stack into the PC

•It starts to execute from that address

•Six interrupts are allocated as follows
– Reset – power-up reset
– Two interrupts are set aside for the timers:
• One for timer 0 and one for timer 1
– Two interrupts are set aside for hardware

external interrupts
• P3.2 and P3.3 are for the external hardware

interrupts INT0 (or EX1), and INT1 (or EX2)
– Serial communication has a single

interrupt that belongs to both receive and
transfer

• Upon reset, all interrupts are disabled
(masked)
– None will be responded to by the

microcontroller if they are activated
• The interrupts must be enabled by software

in order for the microcontroller to respond to
them

– There is a register called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking)
the interrupts

• To enable an interrupt, we take
the following steps:
– Bit D7 of the IE register (EA) must

be set to high to allow the rest of
register to take effect

– The value of EA
• If EA = 1, interrupts are enabled and

will be responded to if their
corresponding bits in IE are high

• If EA = 0, no interrupt will be responded
to, even if the associated bit in the IE
register is high

• The timer flag (TF) is raised when the
timer rolls over
– In polling TF, we have to wait until the

TF is raised
• The microcontroller is tied down while

waiting for TF to be raised, and can not do
anything else

– Using interrupts to avoid tying down the
controller
• If the timer interrupt in the IE register is

enabled, whenever the timer rolls over, TF is
raised

• The microcontroller is interrupted in
whatever it is doing, and jumps to the
interrupt vector table to service the ISR

• In this way, the microcontroller can do other
until it is notified that the timer has rolled
over

• The 8051 has two external
hardware interrupts
– Pin 12 (P3.2) and pin 13 (P3.3) of

the 8051
• Designated as INT0 and INT1
• Used as external hardware interrupts

– The interrupt vector table locations
0003H and 0013H are set aside for
INT0 and INT1

– There are two activation levels for
the external hardware interrupts
• Level trigged
• Edge trigged

• INT0 and INT1 pins are normally
high
– If a low-level signal is applied to

them, it triggers the interrupt
• The microcontroller stops whatever it is

doing and jumps to the interrupt vector
table to service that interrupt

• The low-level signal at the INT pin must
be removed before the execution of the
last instruction of the ISR, RETI

– Otherwise, another interrupt will be
generated

• This is called a level-triggered or level-
activated interrupt and is the default
mode upon reset

• P3.2 and P3.3 are used for normal
I/O
– Unless the INT0 and INT1 bits in the

IE register are enabled
• After the hardware interrupts are

enabled, the controller keeps sampling
the INTn pin for a low-level signal once
each machine cycle

• The pin must be held in a low state until
the start of the execution of ISR

– If the INTn pin is brought back to a logic
high before the start of the execution of ISR,
there will be no interrupt

• If INTn pin is left at a logic low after the
RETI instruction of the ISR, another
interrupt will be activated after one
instruction is executed

• To ensure the activation of the
hardware interrupt at the INTn pin,
– The duration of the low-level signal

is around 4 machine cycles, but no
more
• This is due to the fact that the level-

triggered interrupt is not latched
• Thus the pin must be held in a low state

until the start of the ISR execution

• To make INT0 and INT1 edge-
triggered interrupts, we must
program the bits of the TCON
register
– The TCON register holds the IT0 and

IT1 flag bits that determine level- or
edge-triggered mode of the
hardware interrupt
• IT0 and IT1 are bits D0 and D2 of TCON

– They are also referred to as TCON.0 and
TCON.2 since the TCON register is bit-
addressable

• The external source must be held
high for at least one machine
cycle, and then held low for at
least one machine cycle
– The falling edge of pins INT0 and

INT1 are latched by the 8051 and
are held by the TCON.1 and TCON.3
bits of TCON register
• Function as interrupt-in-service flags
• It indicates that the interrupt is being

serviced now
– On this INTn pin, no new interrupt will be

responded to until this service is finished

• When the ISRs are finished,
TCON.1 and TCON.3 are cleared
– The interrupt is finished and the

8051 is ready to respond to another
interrupt on that pin
• During the time that the interrupt

service routine is being executed, the
INTn pin is ignored, no matter how
many times it makes a high-to-low
transition

– RETI clears the corresponding bit in
TCON register (TCON.1 or TCON.3)
• There is no need for instruction CLR

TCON.1 before RETI in the ISR
associated with INT0

• TI (transfer interrupt) is raised when
the stop bit is transferred
– Indicating that the SBUF register is

ready to transfer the next byte
• RI (received interrupt) is raised when

the stop bit is received
– Indicating that the received byte needs

to be picked up before it is lost (overrun)
by new incoming serial data

• In the 8051 there is only one
interrupt set aside for serial
communication
– Used to both send and receive data
– If the interrupt bit in the IE register

(IE.4) is enabled, when RI or TI is
raised the 8051 gets interrupted
and jumps to memory location
0023H to execute the ISR
• In that ISR we must examine the TI and

RI flags to see which one caused the
interrupt and respond accordingly

• The serial interrupt is used mainly
for receiving data and is never
used for sending data serially
– This is like getting a telephone call

in which we need a ring to be
notified

– If we need to make a phone call
there are other ways to remind
ourselves and there is no need for
ringing

– However in receiving the phone call,
we must respond immediately no
matter what we are doing or we will
miss the call

• The TCON register holds four of
the interrupt flags in the 8051

• The SCON register has the RI and
TI flags

• When the 8051 is powered up,
the priorities are assigned
– In reality, the priority scheme is

nothing but an internal polling
sequence in which the 8051 polls
the interrupts in the sequence listed
and responds accordingly

• To test an ISR by way of simulation
can be done with simple instructions
to set the interrupts high
– Thereby cause the 8051 to jump to the

interrupt vector table
– ex. If the IE bit for timer 1 is set, an

instruct ion such as SETB TF1 wi l l
interrupt the 8051 in whatever it is
doing and will force it to jump to the
interrupt vector table
• We do not need to wait for timer 1 go roll

over to have an interrupt

CONTENT BEYOND SYLLABUS

SL.

NO

.

TOPIC PO-PSO MAPPING

1 80286 MICROPROCESSOR PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO8,PO9,PO10,P

O12,PSO1,PSO2

2 STM32H7

MICROCONTROLLERS

PO1,PO2,PO3,PO4,PO5,PO6,PO7,PO8,PO9,PO10,P

O12,PSO1,PSO2

80286 MICROPROCESSOR

80286 Microprocessor is a 16-bit microprocessor that has the ability to execute 16-

bit instruction at a time. It has non-multiplexed data and address bus. The size of

data bus is 16-bit whereas the size of address bus is 24-bit.

It was invented in February 1982 by Intel. 80286 microprocessor was basically an

advancement of 8086 microprocessor. Further in 1985, Intel produced upgraded

version of 80286 which was a 32-bit microprocessor.

Now the question arises what are the factors that make 80286 more advantageous

than 8086 microprocessor?

 It has non-multiplexed address and data bus that reduces operational speed.

 The addressable memory in case of 80286 is 16 MB.

 It offers an additional adder for address calculation.

 80286 has faster multipliers that lead to quick operation.

 The performance per clock cycle of 80286 is almost twice when compared with

8086 or 8088.

Operating modes of 80286 microprocessor

80286 operates in two modes:

In real address mode, this microprocessor acts as a version of 8086 which is quite

faster. Also without any special modification, the instruction programmed for 8086

can be executed in 80286. It offers memory addressability of 1 MB of physical

memory.

https://electronicsdesk.com/microprocessor.html
https://electronicsdesk.com/8086-microprocessor.html

The protected virtual-address mode of 80286 supports multitasking because

multiple programs can be executed using virtual memory. This mode of 80286

offers memory addressability of 16 MB of physical memory along with 1 GB of

virtual memory.

As using virtual memory, space for other programs can be saved. Sometimes bulky

programs also do exist that cannot be stored in physical memory, so virtual

memory is utilized in order to execute large programs.

This mode is used in 80286, so that in case of memory failure in real address

mode, it can stay in protected manner.

What is virtual memory?

Virtual memory is that part of hard disk which can be utilized for storing large

instructions inside the system. This extra memory can be addressed by the

computer other than the physical memory.

When there exists an instruction that is to be loaded in the memory but whose size

is greater than the provided physical memory. Then some part of hard disk is used

in order to store that instruction, which is known as virtual memory.

Architecture of 80286 Microprocessor

The figure below shows the architectural representation of 80286 microprocessor:

As

we have already mentioned earlier that it is a 16-bit microprocessor thus holds a

16-bit data bus and 24-bit address bus. Also, unlike the 8086 microprocessor, it

offers non-multiplexed address and data bus, which increases the operating speed

of the system.

80286 is composed of nearly around 125K transistors and the pin configuration has

a total of 68 pins.

The CPU, central processing unit of 80286 microprocessor, consists of 4 functional

block:

 Address Unit

 Bus Unit

 Instruction Unit

 Execution Unit

Firstly, the physical address from where the data or instruction is to be fetched is

calculated, by the address unit. Once the physical address is calculated then the

calculated address is handed over to the bus unit. More specifically we can say,

that the calculated address is loaded on the address bus of the bus unit.

This address specifies the memory location from where the data or instruction is to

be fetched. The fetching of data through the memory is done through the data bus.

For faster execution of instruction, the BU fetches the instructions in advanced

from the memory and stores them in the queue.

This is done through the bus control module. As we have discussed that the

prefetched instructions are stored in a 6-byte instruction queue. This instruction

queue then further sends the instruction to the instruction unit.

The instruction unit on receiving the instructions now starts decoding the

instruction. As instructions are stored in prefetched queue thus the decoder

continuously decodes the fetched instructions and stores them into decoded

instruction queue.

Now after the instructions gets decoded then further these are needed to be

executed. So, the instructions from decoded instruction queue are fed to

the execution unit. The main component of EU is ALU i.e., arithmetic and logic

unit that performs the arithmetic and logic operations over the operand according

to the decoded instruction.

Once the execution of the instruction is performed then the result of the operation

i.e., the desired data is send to the register bank through the data bus.

As we have already discussed that 80286 is just a modified version of 8086. The

register set in 80286 is same as that of 8086 microprocessor.

 It holds 8 general purpose registers of 16 bit each.

 It contains 4 segment register each of 16-bit.

 Also has status and control register and instruction pointer.

Interrupt of 80286 Microprocessor

We know that whenever an interrupt gets generated in a system, then the execution

of the current program is stopped and the execution gets transferred to the new

program location where the interrupt is generated.

But once the interrupt gets executed then then in order to get back to the original

program, its address as well as machine state must be stored in the stack. Basically

there exist 3 categories of interrupt in 80286 microprocessor:

 External interrupt (Hardware interrupt)

 INT instruction interrupt (Software interrupt)

 Internally generated interrupt due to some exceptions

External or hardware initiate interrupt are those interrupts that gets generated due

to an external input. And are basically of two types:

1. Maskable interrupt

2. Non-maskable interrupt

Sometimes when multiple programs are allowed to be executed in a system, then

this leads to generation of INT instruction, and such an interrupt is known

as software interrupt.

Another interrupt in 80286 exist due to some unusual conditions or situations

generated in the system that leads to prevention of further execution of the current

instruction.

So, this is all about the modes of operation, architecture and interrupts of 80286

microprocessor.

STM32H7, the Most Powerful Cortex-

M7 MCU, Breaks the 2000-point

Threshold in CoreMark
The STM32H7 series of microcontrollers (MCU) made history today by becoming the most

powerful implementation of the ARM® Cortex®-M7 processor for the embedded market. It is more

than twice as fast as the STM32F7 series, the previous STM32 flagship series, meaning that its core

frequency of 400 MHz has enabled ST to become the first ever to reach 2010 points in CoreMark

with a Cortex-M MCU.

This is possible because ST is the first to have shrunk its M7 implementation from a 90 nm process

node to 40 nm. Media outlets have recently reported that some manufacturers have started or are

about to start mass producing SoCs in 10 nm. However, it is important to understand that these

components only have digital circuits, unlike the embedded MCU from ST, which includes digital

circuitry, Flash memory, and analog components. Hence, these structures are much more complex

than typical mainstream components and thus require more complex processes. Therefore, the 40 nm

node used today is not only groundbreaking but the gateway to a masterful implementation of the

Cortex-M7, and although we can’t enumerate all the great updates or optimizations found in the

STM32H7 in one single post, we’ve decided to focus on some of the reasons why its performance

sets new records.

Three Domains, Memory-Packed

The Three Domains of the STM32H7 (Click to Enlarge)

To optimize the STM32H7, its architecture has been divided into three domains. Very simply,

the first one (D1) includes the core with its cache, Flash memory and high bandwidth peripherals like

https://www.st.com/en/microcontrollers-microprocessors/stm32h743-753.html?icmp=tt4249_gl_pron_oct2016&querycriteria=productId=LN2033
https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.12.13-AM.jpg

the module to drive a screen or the Chrom-Art graphics engine. D2, the connectivity domain, groups

low-speed peripherals like USB, the cryptographic accelerator and the SD/MMC2 unit for storage.

Finally, D3, the batch acquisition mode domain, is responsible for some of the most fundamental

aspects of the MCU like its reset and clock control as well as ADCs, GPIO, RTC, the chip’s power

management and a basic DMA (BDMA) controller.

This structure allowed ST to design a flexible and efficient architecture that packs a massive internal

memory compared to some STM32F7 series. For instance, the L1 Cache is now four times bigger

with 16 KB for instructions and the same amount for data. ST also included a total of 1 MB of

SRAM and 2 MB of Flash, which is three times and twice as much respectively as the previous

generation. However, instead of using a single block of SRAM, that would only benefit a certain

domain, the STM32H7 placed various amounts at different locations to make the memory more

versatile.

Concurrent Access

Memory Integration and Connectivity in the STM32H7

The D1 domain obviously holds the largest amount of SRAM. The core has a total of 192 KB of

TCM SRAM (64 KB I-TCM, optimised for instructions and 128 KB D-TCM, optimised for data),

which acts as an extension to the L1 cache. It has the same performance but is addressable. This

means that TCM RAM can be accessed by the core with no latency and developers can specifically

place information that needs to be deterministically retrieved to perform time-critical routines. The

biggest chunk of SRAM (512 KB) is in the first domain because it contains the most computing

https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.44.10-AM.jpg

intensive aspects of the architecture. Finally, D2 and D3 offer a quick access to their SRAM by the

peripherals and other modules on the chip.

This organization has the great advantage of providing concurrent memory access, meaning that

information can be fetched or stored in the different chunks of SRAM at the same time and by

different domains, greatly improving the efficiency of the architecture. This is extremely important as

embedded MCUs must often handle computationally intensive tasks, like running graphics and

audio, while talking to an interface like a USB port to ensure that there is no disruption in the data

transfer.

Optimized Memory and FPU

Another great feature stemming from the increased computational power of the STM32H7 series is

the ability to use ECC SRAM and Flash. The speed increase compared to the STM32F7 series is so

high that ST now has the computational resources to add error correction and still break performance

records. By providing ECC, ST not only ensures data integrity, but also improves data retention in

the Flash.

Another example of an architectural decision motivated by the needs of ST’s customers was the use

of a double precision (FP64) floating point unit. The need for such a pipeline may not always be

obvious, but some of the products that will benefit the most from the STM32H7 series need to

perform DSP-type computations. For instance, an embedded system that monitors a power grid and

will need to compute fast Fourier Transform algorithms, or a connected device that will run a precise

GPS system will rely heavily on double precision computations.

Power Saving Features and So Much More

Power Savings in the STM32H7

It is impossible to offer a comprehensive list of all the features and optimizations brought by the

STM32H7 series in a single blog post. We haven’t even touched on the amazing power consumption

optimizations that are offered by this three-domain architecture. For instance, it is possible to put D1

and D2 in a very low-powered standby mode (7µA) while D3 continues to capture data in its SRAM

without needing to wake up the other domains, therefore greatly saving energy. There’s also a

complex and elaborate clock-control scheme to ensure that different parts of the architecture run at

varying speeds in order to further improve the MCU’s efficiency.

The STM32H7 series also builds on the previous generation by adding 10 more communication

peripherals for a total of 35, it still offers cryptographic and hashing hardware acceleration, and

remains pin to pin as well as software compatible with the STM32F7 series. The record-breaking

STM32H7 series is sampling today to specific partners, and will be in mass production in Q2 2017.

At this time, ST will have updated the mbed development platform to ensure developers can take full

advantage of this groundbreaking architecture.

https://blog.st.com/wp-content/uploads/2016/10/Screen-Shot-2016-10-20-at-4.42.20-AM.jpg

	MRT 206 _MICROPROCESSOR & EMBEDDED SYSTEMS

